• Title/Summary/Keyword: foundation beam

Search Result 398, Processing Time 0.019 seconds

The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation

  • Ozturk, Baki;Coskun, Safa Bozkurt
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.415-425
    • /
    • 2011
  • In this study, the homotopy perturbation method (HPM) is applied to free vibration analysis of beam on elastic foundation. This numerical method is applied on three different axially loaded cases, namely: 1) one end fixed, the other end simply supported; 2) both ends fixed and 3) both ends simply supported cases. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, $N_r$. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for all the cases considered in this study and the differential transform method (DTM) results available in the literature for the fixed-pinned case.

Electro-magneto-elastic analysis of a three-layer curved beam

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.695-703
    • /
    • 2017
  • In this paper, based on first-order shear deformation theory, the governing equations of motion for a sandwich curved beam including an elastic core and two piezo-magnetic face-sheets are presented. The curved beam model is resting on Pasternak's foundation and subjected to applied electric and magnetic potentials on the piezo-magnetic face-sheets and transverse loading. The five equations of motion are analytically solved and the bending and vibration results are obtained. The influence of important parameters of the model such as direct and shear parameters of foundation and applied electric and magnetic potentials are studied on the electro-mechanical responses of the problem. A comparison with literatures was performed to validate our formulation and results.

SPECTRAL ANALYSIS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION I: POSITIVENESS AND CONTRACTIVENESS

  • Choi, Sung-Woo
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.27-47
    • /
    • 2012
  • It has become apparent from the recent work by Choi et al. [3] on the nonlinear beam deflection problem, that analysis of the integral operator $\mathcal{K}$ arising from the beam deflection equation on linear elastic foundation is important. Motivated by this observation, we perform investigations on the eigenstructure of the linear integral operator $\mathcal{K}_l$ which is a restriction of $\mathcal{K}$ on the finite interval [$-l,l$]. We derive a linear fourth-order boundary value problem which is a necessary and sufficient condition for being an eigenfunction of $\mathcal{K}_l$. Using this equivalent condition, we show that all the nontrivial eigenvalues of $\mathcal{K}l$ are in the interval (0, 1/$k$), where $k$ is the spring constant of the given elastic foundation. This implies that, as a linear operator from $L^2[-l,l]$ to $L^2[-l,l]$, $\mathcal{K}_l$ is positive and contractive in dimension-free context.

Free Vibrations of Horizontally Curved Beams Resting on Winkler-Type Foundations (Winkler형 지반위에 놓인 수평 곡선보의 자유진동)

  • 오상진;이병구;이인원
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.524-532
    • /
    • 1998
  • The purpose of this paper is to investigate the free vibrations of horizontally curved beams resting on Winkler-type foundations. Based on the classical Bernoulli-Euler beam theory, the governing differential equations for circular curved beams are derived and solved numerically. Hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered in numerical examples. The free vibration frequencies calculated using the present analysis have been compared with the finite element's results computed by the software ADINA. Numerical results are presented to show the effects on the natural frequencies of curved beams of the horizontal rise to span length ratio, the foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation

  • Duy, Hien Ta;Van, Thuan Nguyen;Noh, Hyuk Chun
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.1033-1049
    • /
    • 2014
  • The free vibration of functionally graded material (FGM) beams on an elastic foundation and spring supports is investigated. Young's modulus, mass density and width of the beam are assumed to vary in thickness and axial directions respectively following the exponential law. The spring supports are also taken into account at both ends of the beam. An analytical formulation is suggested to obtain eigen solutions of the FGM beams. Numerical analyses, based on finite element method by using a beam finite element developed in this study, are performed in order to show the legitimacy of the analytical solutions. Some results for the natural frequencies of the FGM beams are given considering the effect of various structural parameters. It is also shown that the spring supports show the greatest effect on the natural frequencies of FGM beams.

Exact Distortional Deformation Analysis of Steel Box Girders (강상자형 거더의 엄밀한 단면변형(Distortion) 해석)

  • 진만식;곽태영;이준석;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.43-50
    • /
    • 2002
  • Main goal of this study is to develop MATLAB programming for exact analysis of distortional deformation of the straight box girder. For this purpose, a theory for distortional deformation theory is firstly summarized and then a BEF (Beam on Elastic Foundation) theory is presented using analogy of the corresponding variables. Finally, the governing equation of the beam-column element on elastic foundation is derived. An element stiffness matrix of the beam element is established via a generalized linear eigenvalue problem. In order to verify the efficiency and accuracy of the element using exact dynamic stiffness matrix, buckling loads for the continuous beam structures with elastic foundation and distortional deformations of box girders are calculated.

  • PDF

Free Vibration Analysis of Beam-Columns on Elastic Foundation Using Differential Quadrature Method (DQM을 이용한 탄성지반 위에 놓인 보-기둥의 자유진동 해석)

  • 최규문;김무영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1005-1009
    • /
    • 2001
  • This paper deals with the free vibration analysis of beam-columns on elastic foundation using Differential Quadrature Method. Based on the dynamic equilibrium equation of a beam element acting the stress resultants and the inertia force, the governing differential equation is derived for the in-plane free vibration of such beam-columns. For calculating the natural frequencies, this equation is solved by the Differential Quadrature Method. It is expected that the results obtained herein can be used in application of Differential Quadrature Method to the field of civil engineering and practically in the structural engineering, the foundation engineering and the vibration control fields.

  • PDF

Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads

  • Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.

Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams

  • Arefi, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.579-590
    • /
    • 2018
  • Size-dependent free vibration responses and magneto-electro-elastic bending results of a three layers piezomagnetic curved beam rest on Pasternak's foundation are presented in this paper. The governing equations of motion are derived based on first-order shear deformation theory and nonlocal piezo-elasticity theory. The curved beam is containing a nanocore and two piezomagnetic face-sheets. The piezomagnetic layers are imposed to applied electric and magnetic potentials and transverse uniform loadings. The analytical results are presented for simply-supported curved beam to study influence of some parameters on vibration and bending results. The important parameters are spring and shear parameters of foundation, applied electric and magnetic potentials, nonlocal parameter and radius of curvature of curved beam. It is concluded that the increase in radius of curvature tends to an increase in the stiffness of curved beam and consequently natural frequencies increase and bending results decrease. In addition, it is concluded that with increase of nonlocal parameter of curved beam, the stiffness of structure is decreased that leads to decrease of natural frequency and increase of bending results.

An investigation of the thermodynamic effect on the response of FG beam on elastic foundation

  • Bouiadjra, Rabbab Bachir;Bachiri, Attia;Benyoucef, Samir;Fahsi, Bouazza;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.115-127
    • /
    • 2020
  • This study presents an analytical approach to investigate the thermodynamic behavior of functionally graded beam resting on elastic foundations. The formulation is based on a refined deformation theory taking into consideration the stretching effect and the type of elastic foundation. The displacement field used in the present refined theory contains undetermined integral forms and involves only three unknowns to derive. The mechanical characteristics of the beam are assumed to be varied across the thickness according to a simple exponential law distribution. The beam is supposed simply supported and therefore the Navier solution is used to derive analytical solution. Verification examples demonstrate that the developed theory is very accurate in describing the response of FG beams subjected to thermodynamic loading. Numerical results are carried out to show the effects of the thermodynamic loading on the response of FG beams resting on elastic foundation.