• Title/Summary/Keyword: fossil fuel

Search Result 894, Processing Time 0.029 seconds

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

Feasibility Study for Tidal Power Plant Site in Garolim Bay Using EFDC Model (EFDC모형을 이용한 가로림만의 조력발전 위치 타당성 검토)

  • Shin, Bum-Shick;Kim, Kyu-Han;Kim, Jong-Hyun;Baek, Seung-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.489-495
    • /
    • 2011
  • Fossil fuel energy has become a worldwide environmental issue due to its effect on global warming and depletion in its supply. Therefore, the interest in developing alternative energy source has been rising. Ocean energy, especially, has gained strength as an alternative energy source for its unlimited supply with low secondary risks. Among all the ocean energy, the west coast of Korea holds the field of large-scale energy development because of its distinctive tidal range. Tidal power plant construction at the sea may expedite multi development effects such as bridge roles, tourism resource effects and adjustability of flood inundation at the inner bay. This study introduces the validity of tidal power plant construction at Garilim Bay in west coast of Korea by examining anticipated hydraulic characteristics using EFDC model. Through EFDC numerical simulations, the feasibility of Garolim Bay as a tidal power plant field has been proved. And the most effective tidal power plant construction would be to install hydraulic turbine in the west side of bay entrance where ebb current is stronger, and install water gate in the east side of bay entrance where the flood current is superior.

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

The Strategies of Transport Demand Management to Decrease the Greenhouse Gases in Transportation Part (교통부문 온실가스 배출량 저감을 위한 교통수요관리 방안 전략 연구)

  • Jeong, Do-Yeong;Yun, Jang-Ho;Park, Sang-U;Kim, Ju-Yeong
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.29-38
    • /
    • 2011
  • The growing amount of using the fossil fuel is bringing about environmentally, economically serious problems like as global warming. To solve the problems, the international society has begun to decrease greenhouse gases through the international agreement like as the climate change convention. In South of Korea, it was presented practical goal of Green Development try to decrease greenhouse, which is the future 60 years vision. And, it contains the strategies of Green Development and 5th Plan of Green Development. Nowadays, the government accepted the active alternative scenario 3, which is the goal of 4% decrease in greenhouse gases until 2020's, presented by Presidential Committee on Green Growth. This study established the strategies of Transport Demand Management to decrease the greenhouse gases in transportation part, and then we measured the effect of them. As a result, if it takes effect the aggressive strategies annually, it will cut greenhouse gas pollution by 3.1%, which is 7,590,000t$CO_2eq$, in transportation part. So, we can expect that it would be the effective policy tool to achieve the goal of government, which is the Green Development, if it controls the strategies of TDM effectively by the political needs.

A Basic Study for Wind Energy of Building Cladding using Computational Fluid Dynamics (CFD를 이용하여 건물 외피의 바람에너지에 관한 적용연구)

  • Chung, Yung-Bea
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • The new and renewable energy today has a great interest in all countries around the world. In special it has need more limit of the fossil fuel that needs of low carbon emission among the social necessary conditions. Recently, the high-rise building demand the structural safety, the economic feasibility and the functional design. The high-rise building spends enormous energy and it satisfied the design in solving energy requirements. The requirements of energy for the building depends on the partly form wind energy due to the cladding of the building that came from the surroundings of the high-rise building. In this study of the wind energy, the cladding of the building was assessed a tentative study. The wind energy obtains from several small wind powers that came from the building or the surrounding of the building. In making a cladding the wind energy forms with wind pressure by means of energy transformation methods. The assessment for the building cladding was surrounded of wind speed and wind pressure that was carried out as a result of numerical simulation of wind environment and wind pressure which is coefficient around the high-rise building with the computational fluid dynamics. In case of the obtained wind energy from the pressure of the building cladding was estimated by the simulation of CFD of the building. The wind energy at this case was calculated by energy transform methods: the wind pressure coefficients were obtained from the simulated model for wind environment using CFD as follow. The concept for the factor of $E_f$ was suggested in this study. $$C_p=\frac{P_{surface}}{0.5{\rho}V^{2ref}}$$ $$E_c=C_p{\cdot}E_f$$ Where $C_p$ is wind pressure coefficient from CFD, $E_f$ means energy transformation parameter from the principle of the conservation of energy and $E_c$ means energy from the building cladding. The other wind energy that is $E_p$ was assessed by wind power on the building or building surroundings. In this case the small wind power system was carried out for wind energy on the place with the building and it was simulated by computational fluid dynamics. Therefore the total wind energy in the building was calculated as the follows. $$E=E_c+E_p$$ The energy transformation, which is $E_f$ will need more research and estimation for various wind situation of the building. It is necessary for the assessment to make a comparative study about the wind tunnel test or full scale test.

  • PDF

Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis (급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구)

  • Choi, Sang Kyu;Choi, Yeon Seok;Kim, Seock Joon;Han, So Young
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.646-652
    • /
    • 2016
  • Biomass is regarded as one of the promising energy sources to deal with the depletion of fossil fuels and the global warming issue. Biocrude-oil can be produced through the fast pyrolysis of biomass feedstocks such as wood, crops, agricultural and forestry residues. It has significantly higher viscosity than that of conventional petroleum fuel and contains solid residues, which can lower the spray and atomization characteristics when applied to the burner. In addition, biocrude-oil consists of hundreds of chemical species derived from cellulose, hemicellulose and lignin, and evaporation characteristics of the biocrude-oil droplet are distinct from the conventional fuels. In the present study, a numerical study was performed to investigate the evaporation characteristics of biocrude-oil droplet using a simplified composition of the model biocrude-oil which consists of acetic acid, levoglucosan, phenol, and water. The evaporation characteristics of droplets were compared at various surrounding air temperatures, initial droplet diameters, and ethanol mixing ratios. The evaporation time becomes shorter with increasing air temperature, and it is much sensitive to the air temperature particularly in low temperature ranges. It was also found that the biocrude-oil droplet evaporates faster in cases of the smaller initial droplet diameter and larger ethanol mixing ratio.

Simulation of the flue gas treatment processes of an industrial-waste incinerator using Aspen plus (Aspen plus를 이용한 산업폐기물 소각로의 배가스 처리 공정 모사)

  • Lee, Ju-Ho;Jung, Moon-Hun;Kwon, Young-Hyun;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3246-3252
    • /
    • 2009
  • The interest on the recovery of thermal energy using the waste has been rising to solve the problems of continuous increase of waste generation and the depletion of the fossil fuel recently. The incineration has been used most popularly as a treatment process of the waste for the energy recovery. However, it is expected that incineration and design cost will increase in the treatment of air contaminant emitted from incinerator. This research has simulated the actual incinerator and the flue gas treatment system using the Aspen plus which is the software to simulate the chemical process. The incineration process is composed of the 1st and 2nd combustor to burn the waste, SNCR process to reduce the $NO_x$ using the urea, and the steam generation process to save the energy during incineration. The $Ca(OH)_2$ slurry was used as an acid gas (HCl, $SO_2$) treatment materials and the removal efficiency for the products from the neutralization of acid gas in SDA and combustion ash was simulated at the bag filter. The simulation result has been corresponded with the treatment efficiency of emitted gas from the actual industrial waste incinerator and it is presumed to be used to forecast the efficiencies of flue gas treatment system in the future.

Drying of Crops with Solar Heated Air -Drying of Rough Rice - (태양열을 이용한 농산물건조에 관한 연구 (I)-벼의 건조에 대하여)

  • 이문남;금동혁;류능환
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.100-113
    • /
    • 1978
  • Drying grain with conventional artificial drying methods requires great quantities of petroleum fuels. Depletion of fossil fuel increases the need of the utilization of solar energy as an alternative to petroluem fuels for drying grain , an energy intensive agricultural operation. Many techniques for the utilization of solar energy in grain drying have been developed, however, there are many problems in adopting solar energy as an energy sources for drying grain. Futhermore, very little research has been done on solar grain drying in Korea. This study was conducted to evaluate the availability of solar energy for drying of rough rice in Chuncheon, Suweon, and Jinju areas based on 50year meteorological data, and to analyze experimentally the performance of a solar air collector for dying grain, and to find the effects of solar heated air compared to unheated air on the rate of drying and energy consumption required for drying of rough rice. The results of this study was may be summarized as follows ; 1. Monthly average daily total radiation on a horizontal surface in October was 260.6 ly/day for Chuncheon, 240.3 ly/day for Suweon , and 253.4 ly/day for Jinju area, respectively. 2. the ratio of monthly average daily diffuse radiation to daily total radiation on a horizontal surface was approximately 0.41 for Chuncheon, 0.45 for Suweon, and 0.44 for Jinju area, respectively. 3. Although the statistical distribution curves of daily total radiation for the three locations were not identical , the differences among them were not large and may be neglected for many practical purposes. 4. I was estimated that the optimum tilting angle of the collector in October was approximately 46 degrees for Chuncheon and Suweon and 45 degrees for Jinju. 5. The ratio of the total radiation on a optimum tilting plane to that on a horizontal plane was estimated to be 1.36 for Chuncheon, 1.31 for Suweon, and 1.27 for Jinju , respectively. 6. The collection efficiency of the solar air collector ranged from 47. 8 to 51. 5 percent at the air flow rates of 251. 1-372.96 $m^3$/hr. High efficiency remained nearly , constant during the best sunshine hours, 10 a.m. to 2 p.m. and decreased during other hours. More energy was collected as the air flow rate incresed. 7. The average temperature rise in the drying air from the solar collector for the test period varied from $6.5^\circC$ to $21.8^\circC$ above the ambient air temperature. 8. Solar-dried rough rice averaged 13.7 percent moisture (w.b.) after 130 hours of drying with the air flow rate of 1. 64 ccm/$m^3$, and rough rice dried with natural air averaged 15.1 percent moisture (w.b.) after 325 hours of drying with the same air flow rate. 9. Energy saving of 2.4 kwh per $m^3$ percentage point of moisture removed was obtained from solar heated air drYing. The solar bin used 53.3 percent less energy per percentage point of moisture removed than the natural air bin.

  • PDF

A Study on the Characteristics of Soil in the Asian Dust Source Regions of Mongolia (황사발원지 (몽골) 토양에 대한 특성 분석)

  • Kim, Deok-Rae;Kim, Jeong-Soo;Ban, Soo-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.606-615
    • /
    • 2010
  • This study aims to identify the characteristics of soil in Mongolia, one of the major Asian dust sources that influence the Korean Peninsula. Soil particle size was analyzed and the result shows that sand (57.5~97.3%) was identified prominently in most regions, followed by silt (2.5~34.7%) and clay (0.0~7.8%). Soil pH of the covered regions were in the range 7.1~10.1, either weak alkaline or strong alkaline. Analysis of ion species in the soil samples exhibited that $Na^+$ ($91.9\;mg\;kg^{-1}$), $Cl^-$ ($65.9\;mg\;kg^{-1}$), and $Ca^{2+}$ ($53.5\;mg\;kg^{-1}$) were detected more in the soil than other species such as ${SO_4}^{2-}$ ($19.2\;mg\;kg^{-1}$), ${NO_3}^-$ ($46.6\;mg\;kg^{-1}$), ${NH_4}^+$ ($3.9\;mg\;kg^{-1}$), $K^+$ ($22.0\;mg\;kg^{-1}$), and $Mg^{2+}$ ($10.2\;mg\;kg^{-1}$). As for heavy metal content in the soil, concentrations of soil-borne metals including Fe, Al, Ca, Mg, and K tended to be high, while metals that come from manmade sources Pb, Cd, Cr, V, and Ni were remarkably low. The concentration of organic carbon (OC) was relatively high at $15.9\;{\mu}g\;mg^{-1}$, while elemental carbon (EC), directly released in the process of fossil fuel combustion, was not detected at all or found in very small amounts. The result indicates that pollution from manmade sources scarcely occurred. The analysis results from this study may contribute to improving modeling accuracy by providing input data for Asian dust prediction models, and be used as base data for determining the process of physiochemical transformation of Asian dust during long-range transport.

Critical Success Factors for Wind Power Projects (풍력 발전소 프로젝트의 핵심성공요인)

  • Lyou, An-Suck;Kim, Byung-Il;Kim, Hyoung-Kwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.1
    • /
    • pp.140-147
    • /
    • 2012
  • Climate changes caused by fossil fuel energy usages have led to serious environmental damages and resource scarcity. Ever-increasing demand for energy causes harsh competition in international energy markets. Nuclear power, which once was regarded as a desirable clean energy, began to face public oppositions after the Japanese nuclear disaster in 2011. In this context, wind power is now considered to be an ever-more important recyclable energy source. Thus, this study intended to identify critical success factors for wind power construction projects. After a thorough literature review, two focus group interview sessions were conducted. A questionnaire-based survey, coupled with the two previous methods, resulted in the extraction of important factors for the success of wind power projects. Experts, including those working as constructors, designers, and owners, were paid a direct visit for the interview and survey. The critical success factors were categorized into feasibility study, right policies, equipment selection, and project financing issues. The proposed critical success factors are expected to be an effective guideline for future investors in wind powers.