• Title/Summary/Keyword: fossil fuel

Search Result 894, Processing Time 0.031 seconds

Carbon dioxide absorption characteristics according to amine mixtures with different order (급수가 다른 아민 혼합에 따른 이산화탄소 흡수 특성)

  • Choi, Soo-Hyun;You, Jong-Kyun;Park, Ki-Tae;Baek, Il-Hyun;Park, So-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4635-4642
    • /
    • 2013
  • The advanced absorbent that used amine mixture with different order were developed to separate carbon dioxide emitted from fossil fuel power plant. The carbon dioxide absorption capacity for mixtures with different amine(primary, secondary and tertiary) were investigated according to $CO_2$ partial pressure. The carbon dioxide absorption capacity at the same pressure is ordered as 3DMA1P 30wt%>3DMA1P 27wt%+MEA 3wt%>3DMA1P 27wt%+DEA 3wt%. The result indicates that mixing tertiary amine with primary amine yields more efficient carbon dioxide absorbent than mixing tertiary with secondary amine does. Finally, the predicted semi-empirical gas-liquid equilibrium model fitted with experimental results.

Strength Properties of Mortar According to Types of Binders for Reducing Curing Process of Concrete Secondary Products for Reduction CO2 (CO2 절감을 위한 콘크리트 2차제품 양생단계저감용 결합재 종류에 따른 모르타르 강도특성)

  • Kim, Ha-Seog;Baek, Dae-Hyun;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.37-46
    • /
    • 2014
  • Carbon dioxide generated from construction materials and construction material industry among the fields of construction is approximately 67 million tons. It is about 30% of the carbon dioxide generated in the fields of construction. In order to reduce carbon dioxide in the fields of construction, it is necessary to control the use of fossil fuel consumed and decrease carbon emission by reducing the secondary and tertiary curing generating carbon dioxide in construction material industry. Therefore, this study manufactured mortar by having cement as the Plain and substituting three binding materials up to 50% and then adopted different curing methods to analyze congelation and strength characteristics. Test results for strength property by changing binding materials showed that specimens with blast furnace slag, CSA 15% and CAMC 5% resulted in positive effect for strength.

$TiO_2$ Particle Size Effect on the Performance of Dye-Sensitized Solar Cell ($TiO_2$ 입자 크기에 따른 염료감응태양전지의 성능 변화)

  • Kim, Ba-Wool;Park, Mi-Ju;Lee, Sung-Uk;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.145-146
    • /
    • 2007
  • Dye-Sensitized Solar Cell Solar cells(DSSC) were appeared for overcoming global environmental problems and lack of fossil fuel problems. And it is one of study field that is getting into the spotlight lately because manufacturing method is more simple and inexpensive than existing silicon solar cells. Oxide semiconductor is used for adsorption of dye and electron transfer in DSSC study, and $TiO_2$ is used most usually. Overall light conversion efficiency is changed by several elements such as $TiO_2$ particle size and structure, pore size and shape. In this study, we report the solar cell performance of titania$(TiO_2)$ film electrodes with various particle sizes. $TiO_2$ particle size was 16 nm, 25 nm, and mixture of 16nm and 25 nm, and manufactured using Doctor blade method. When applied each $TiO_2$ film to DSSC, the best efficiency was found at 16nm of $TiO_2$ particle. 16nm of $TiO_2$ particle has the highest efficiency compared to the others, because particles with smaller diameters would adsorb more dye due to larger surface area. And in case of the mixture of 16nm and 25 nm, the surface area was smaller than expected. It is estimated that double layer is adsorbed a large amount of chemisorbed dye and improved light scattering leading due to efficiency concentration light than mono layer.

  • PDF

Proposal and Analysis of DMR Process with Hydrofluorocarbon Refrigerants (Hydrofluorocarbon 냉매를 적용한 DMR 공정 제안 및 분석)

  • Park, Jinwoo;Lee, Inkyu;Shin, Jihyun;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Natural gas, one of the cleanest fossil fuel, is liquefied to reduce its volume for the long distance transportation. Small size floating liquefied natural gas plant has small area that safe issue is highly considered. However, Dual Mixed Refrigerants (DMR) process has fire potential by using flammable refrigerants and N2 Expander process has low compressed energy efficiency which has high inherent process safety. Therefore, safe process with high compressed energy efficiency is constantly needed. This study suggested an alternative refrigerants to existing DMR process by using Hydrofluorocarbon which has high safety due to its non-flammable properties. As a result, it showed 34.8% lower compressed energy efficiency than DMR process that contains fire potential whereas 42.6% improved compressed energy efficiency than Single N2 Expander process. In conclusion, this research proposed safe process for small size floating liquefied natural gas plant while having high efficiency.

Stress Analysis of Arctic Thaw Settlement with Gas Pipeline using Finite Element Method (유한요소해석을 활용한 극한지 융해침하에 따른 천연가스배관의 응력해석)

  • Kim, Kyung Il;Yeom, Kyu Jung;Kim, Young-Pyo;Kim, Woo Sik;Oh, Kyu Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.78-84
    • /
    • 2014
  • It is important to secure the supply of gas in arctic region which is not developed recently due to depleting of fossil fuel. It is competing in order to secure the arctic region. The need for the occurring the pipeline design in arctic region is essential for development. In this study, we develop the model of thaw settlements for analysis the stress and displacement which applied with pipe in arctic region between $-40^{\circ}C$ to $20^{\circ}C$. The soil was applied with Mohr-coulomb theory and pipe was elasto-plastic method.

The Fabrication of Ion Exchange Membrane and Its Application to Energy Systems (고분자 이온교환막의 제조와 이온교환막을 이용한 에너지 공정)

  • Kim, Jae-Hun;Ryu, Seungbo;Moon, Seung-Hyeon
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.79-96
    • /
    • 2020
  • Secondary energy conversion systems have been briskly developed owing to environmental issue and problems of fossil fuel. They are basically operated based on electro-chemical systems. In addition, ion exchange membranes are one of the significant factors to determine performance in their systems. Therefore, the ion exchange membranes in suitable conditions must be developed to improve the performance for the electro-chemical systems. These ion exchange membranes can be classified into various types such as cation exchange membrane, anion exchange membrane and bipolar membrane. Their membranes have distinct characteristics according to the chemical, physical and morphological structure. In this review, the types of ion exchange membranes and their fabrication processes are described with main characteristics. Moreover, applications of ion exchange membranes in newly developed energy conversion systems such as reverse electrodialysis, redox flow battery and water electrolysis process are described including their roles and requirements.

Trends of Underground $CO_2$ Storage Technology for the Large Scale Reduction of GHG (온실가스 대량감축을 위한 $CO_2$ 지중저장의 기술 동향)

  • Chae, Kwagn-Seok;Lee, Sang-Pil;Yoon, Sung-Wook;Matsuoka, Toshifumi
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.309-317
    • /
    • 2010
  • CCS (Carbon dioxide Capture and Storage) is a means of mitigating the contribution of $CO_2$ to the Greenhouse gas, from large point sources such as power plants and steel companies. CCS is a process whereby $CO_2$ is captured from gases produced by fossil fuel combustion, compressed, transported and injected into deep geologic formations for permanent storage. CCS applied to a conventional power plant can reduce $CO_2$ emissions to the atmosphere by approximately 80~90% compared to a plant without CCS. The IPCC estimates that the economic potential of CCS will be between 10% and 55% of the total carbon mitigation effort by year 2100. In this paper, overseas sites where CCS technology is being applied and technical development trends for CCS are briefly reviewed.

A Study on Stress Corrosion Cracking Evaluation with Material Degradation of High Temperature Components (고온부재의 재질열화에 따른 응력부식균열 평가에 관한 연구)

  • Park, Jong-Jin;Yu, Ho-Seon;Jeong, Se-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1123-1132
    • /
    • 1996
  • It has been reported that high temperature structural components represent the phenomenon of material degradation according to a long term service under high temperature and pressure. Especially, fossile power plant components using the fossil fuel and heavy oil are affected by dewpoint corrosion of $H_2SO_4$produced during a combustion. Therefore, the service materials subjected to high temperature and pressure may occur the stress corrosion cracking. The object of this paper is to investigate SCC susceptibility according to the material degradation of the high temperature structural materials in dewpoint corrosive environment-$H_2SO_4$.The obtained results are summarized as follows : 1) In case of secondary superheater tube, the fractograph of dimple is observed at the concentration of $H_2SO_4$-5%. When the concentration of $H_2SO_4$ is above 10%, the fracture mode is shifted from a transgranular fracture to an quasi-intergranular fracture according to the increment of concentration. 2) In the relationship between [$\Delta$DBTT]$_sp$ and SCC susceptibility, it is confirmed that the greater material degradation degree is, the higher SCC susceptibility is. In addition, it can be known that SP test is useful test method to evaluate SCC susceptibility for high temperature structural components. 3) When [$\Delta$DBTT]$_sp$ is above 17$17^{\circ}C$ the SCC fracture behavior is definitely observed with SCC susceptibility of above 0.4.

NOx Conversion of Mn-Cu Catalyst at the Low Temperature Condition (저온에서 Mn-Cu 촉매의 NOx 전환특성)

  • Park, Kwang-Hee;You, Seung-Han;Park, Young-Ok;Kim, Sang-Wung;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4250-4256
    • /
    • 2011
  • Mn catalyst promoted with Cu were prepared and tested for selective catalytic reduction of $NO_x$ with $NH_3$. Performance of each catalyst was investigated for $NO_x$ activity while changing temperature, space velocity, water content and $O_2$ concentration. Hydrogen conversion efficiency of catalyst was also measured in the $H_2$-TPR system. The inhibition effect of water on catalyst was investigated with the on-off control of water supply. High activity of Mn-Cu catalyst was observed for $160{\sim}260^{\circ}C$. It is found that increase of oxygen concentration acts as a promotor to the increase of catalyst activity but water content acts as a inhibitor.

A Selective Recovery Condition of Vanadium from Fly Ash Leach Liquor by UV-Spectrophotometry (UV 분광법을 이용한 중유회 용출액으로부터 바나듐의 선택적 회수 조건)

  • Kim, Da-Bin;Na, Su-Bin;Han, Hyea-Chul
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.65-72
    • /
    • 2016
  • We studied a selective recovery condition of vanadium (V) from FALL (Fly Ash Leach Liquor) produced at a fossil fuel power station using heavy oil. By applying a spectroscopy to quantify the V in a sample, we identified a concentration range V interfered by on presence of metals such as Ni, Fe Also, the optimal vanadium precipitation rate according to the amount of 5.0M $NH_3$ loaded to the sample, solution pH and stirring time. As a result of the experiment, the maximum selective recovery ratio of V was achieved to be higher than 91.5% when the stirring duration was less than 1 minute at pH 7.0, and $25^{\circ}C$.