• Title/Summary/Keyword: forward kinematics

Search Result 164, Processing Time 0.021 seconds

Digital Human Modeling for Human-centered CAD System (인간 친화적 설계 시스템을 위한 디지털 인체 모델 구성 연구)

  • Jung, Moon-Ki;Lee, Kun-Woo;Cho, Hyun-Deok;Kim, Tae-Woo;Yanzhao, Ma;Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.429-440
    • /
    • 2007
  • The purpose of this research is to develop the Human-centered CAD system in which human factors can be considered during the design stage. For this system there are several issues to research, like the digital human modeling technology, the definition of interactions between human and product, the simulation of human motion when using the product, and the bio-mechanical analysis of human, etc. This paper introduces how to construct the kinematical structure of the digital human model. For our digital human model H-ANIM, the international specification of humanoid animation is referenced. And we added the skeleton geometry and the skin surfaces to our model. And it can manipulate its joints by forward kinematics. Also the IKAN inverse kinematics algorithm is adopted to support the posture prediction of the digital human model in the product environment. All of these ideas are implemented using CAD API so that we can apply these functions to the current commercial CAD systems. In this manner, the human factor issues can be effectively taken into account at the early design phase and the costs of bio-mechanical evaluation will be significantly reduced.

A study on design, experiment control of the waterproof robot arm (방수형 로봇팔의 설계, 실험 및 제어 연구)

  • Ha, Jihoon;Joo, Youngdo;Kim, Donghee;Kim, Joon-Young;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.648-657
    • /
    • 2014
  • This paper is about the study on a newly developed small waterproofed 4-axis robot arm and the analysis of its kinematics and dynamics. The structure of robot arm is designed to have Pitch-Pitch-Pitch-Yaw joint motion for inspection using a camera on itself and the joint actuator driving capacity are selected and the joint actuators are designed and test for 10m waterproofness. The closed-form solution for the robot arm is derived through the forward and inverse kinematics analysis. Also, the dynamics model equation including the damping force due to the mechanical seal for waterproofness is derived using Newton-Euler method. Using derived dynamics equation, a sliding mode controller is designed to track the desired path of the developed robot arm, and its performance is verified through a simulation.

A Feasibility Study in Forestry Crane-Tip Control Based on Kinematics Model (1): The RR Manipulator (기구학적 모델 기반 임업용 크레인 팁 제어방안에 관한 연구(1): RR 매니퓰레이터)

  • Kim, Ki-Duck;Shin, Beom-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.287-301
    • /
    • 2022
  • This study aims to propose a crane-tip control method to intuitively control the end-effector vertically or horizontally for improving the crane work efficiency and to confirm the control performance. To verify the control performance based on experimental variables, a laboratory-scale crane was manufactured using an electric cylinder. Through a forward and reverse kinematics analysis, the crane was configured to output the position coordinates of the current crane-tip and the joint angle at each target point. Furthermore, a method of generating waypoints was used, and a dead band using lateral boundary offset (LBO) was set. Appropriate parameters were selected using bang-bang control, which confirmed that the number of waypoints and LBO radius were associated with positioning error, and the cylinder speed was related to the lead time. With increased number of waypoints and decreased LBO radius, the positioning error and the lead time also decreased as the cylinder speed decreased. Using the proportional control, when the cylinder velocity was changed at every control cycle, the lead time was greatly reduced; however, the actual control pattern was controlled by repeating over and undershoot in a large range. Therefore, proportional control was performed by additionally applying velocity gain that can relatively change the speed of each cylinder. Since the control performed with in a range of 10 mm, it was verified th at th e crane-tip control can be ach ieved with only th e proportional control to which the velocity gain was applied in a control cycle of 20 ms.

Target Tracking Control of Mobile Robots with Vision System in the Absence of Velocity Sensors (속도센서가 없는 비전시스템을 이용한 이동로봇의 목표물 추종)

  • Cho, Namsub;Kwon, Ji-Wook;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.852-862
    • /
    • 2013
  • This paper proposes a target tracking control method for wheeled mobile robots with nonholonomic constraints by using a backstepping-like feedback linearization. For the target tracking, we apply a vision system to mobile robots to obtain the relative posture information between the mobile robot and the target. The robots do not use the sensors to obtain the velocity information in this paper and therefore assumed the unknown velocities of both mobile robot and target. Instead, the proposed method uses only the maximum velocity information of the mobile robot and target. First, the pseudo command for the forward linear velocity and the heading direction angle are designed based on the kinematics by using the obtained image information. Then, the actual control inputs are designed to make the actual forward linear velocity and the heading direction angle follow the pseudo commands. Through simulations and experiments for the mobile robot we have confirmed that the proposed control method is able to track target even when the velocity sensors are not used at all.

Kinematical Analysis of Service Motion by Stance Types in Tennis Serve (테니스 서브 스탠스 유형에 따른 서비스 동작의 운동학적 분석)

  • Kim, Sung-Sup;Kim, Eui-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.147-158
    • /
    • 2008
  • The purpose of this study was to analyze the kinematical variables involved in two types of service motion in tennis pinpoint and platform stance, to find the fastest serving method. Seven skilled high school tennis players participated, and the kinematics were recorded by the Vicon motion analysis system. For the gathering and analysis of the data workstation, bodybuilder and polygon were used. During the back swing for the pinpoint stance, as the back leg moves forward the COM and the racquet moves more, thus taking 0.04 seconds longer than the platform stance. The body of the subject takes a bow-shape as the subject's foot moves back and their hip moves forward. This movement enables the subject to create more power during the backswing to impact. It also increases the spread of the COM racquet and the serve speed is increase. As there is no forward movement of the foot during the backswing of the platform stance, the COM and the racquet move less and thus the time required is shorter than that for the pinpoint stance by 0.04seconds. Similarly, the time spent creating the power for the serve is shortened, the COM racquet is narrower and the speed is lessened. However, the advantage of this serve is that it increases the stability.

Design of a new 4-DOF soft finger mechanism (4자유도 새로운 소프트 핑거 설계)

  • Cha, Hyo-Jung;Yi, Byung-Ju
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • A new soft finger mechanism using a spring as a backbone is proposed in this work. It is a 4 DOF mechanism that consists of a spring and 3 cylinders, which behave like joints with 3 up-and-down rotations and 1 left-and-right rotation. To control each joint, cylinders have small holes in their cross-sectional areas, and wires of different length are penetrated into these holes. We can control each joint by pulling the corresponding wire. The forward kinematics is solved by using the geometry of mechanism. And the relationship (Jacobian) between the linear velocity of the wires and the joint angular rate is obtained. A virtual simulator is developed to test the validity of the kinematic model. In the experiment, first, the position control is conducted by tracking a given trajectory. Second, to verify the flexibility and safety, we show that the soft finger deflects in a safe manner, in spite of the collision with environment.

  • PDF

Task based design of modular robot manipulator using efficient genetic algorithms

  • Han, Jeongheon;Chung, Wankyun;Youm, Youngil;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.243-246
    • /
    • 1996
  • Modular robot manipulator is a robotic system assembled from discrete joints and links into one of many possible manipulator configurations. This paper describes the design method of newly developed modular robot manipulator and the methodology of a task based reconfiguration of it. New locking mechanism is proposed and it provides quick coupling and decoupling. A parallel connection method is devised and it makes modular robot manipulator working well and the number of components on each module reduced. To automatically determine a sufficient or optimal arrangement of the modules for a given task, we also devise an algorithm that automatically generates forward and inverse manipulator kinematics, and we propose an algorithm which maps task specifications to the optimized manipulator configurations. Efficient genetic algorithms are generated and used to search for a optimal manipulator from task specifications. A few of design examples are shown.

  • PDF

A 6-degree-of-freedom force-reflecting hand controller using fivebar parallel mechanism (+5각 관절 병렬 구조를 이용한 6자유도 힘 반사형 원격 조종기)

  • 진병대;우기영;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1545-1548
    • /
    • 1997
  • A Force-refecting hand controller can provide the kinesthetic information obtained from a slave manipulator to the operator of a teleoperation system. This thesis presents the desgn and the analysis of a 6-degree-of-freedom force-reflecting hand controller using fivebar parallel mechanism. The goal of this thesis is to construct a superior hand controller that can provide large workspace and good force-reflecting ability. The forward kinematics of the fivebar paprallel mechanism has been calculated in real-time using three pin-joint sensors in addition to six actuator position sensors. A force decomposition approach is used to comput the Jacobin. To analyze the characteristics of the fivebar parallel mechanism, it has been compared with the other three parallel mechanisms in terms with workspace and manipulability measure. The force-reflecting hand controller using the fivebar parallel mechanism has been constructed and tested to verify the feasibility of the design concept.

  • PDF

Teleoperated Control of a Mobile Robot Using an Exoskeleton-Type Motion Capturing Device Through Wireless Communication (Exoskeleton 형태의 모션 캡쳐 장치를 이용한 이동로봇의 원격 제어)

  • Jeon, Poong-Woo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.434-441
    • /
    • 2004
  • In this paper, an exoskeleton-type motion capturing system is designed and implemented. The device is designed to have 12 degree-of-freedom entirely to represent human arm motions. Forward and inverse kinematics of the device are analyzed to make sure of its singular positions. With the designed model parameters, simulation studies are conducted to verify that the designed motion capturing system is effective to represent human motions within the workspace. As a counterpart of the exoskeleton system, a mobile robot is built to follow human motion restrictively. Experimental studies of teleoperation from the exoskeleton device to control the mobile robot are carried out to show feasible application of wireless man-machine interface.

Fault Tolerance in Control of Autonomous Legged Robots (자율 보행 로봇을 위한 내고장성 제어)

  • 양정민
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.943-951
    • /
    • 2003
  • A strategy for fault-tolerant gaits of autonomous legged robots is proposed. A legged robot is considered to be fault tolerant with respect to a given failure if it is guaranteed to be capable of walking maintaining its static stability after the occurrence of the failure. The failure concerned in this paper is a locked joint failure for which a joint in a leg cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but legged robots have fault tolerance capability to continue static walking. An algorithm for generating fault-tolerant gaits is described and, especially, periodic gaits are presented for forward walking of a hexapod robot with a locked joint failure. The leg sequence and the formula of the stride length are analytically driven based on gait study and robot kinematics. The transition procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.