• Title/Summary/Keyword: forward and inverse kinematics

Search Result 96, Processing Time 0.026 seconds

Task based design of modular robot manipulator using efficient genetic algorithms

  • Han, Jeongheon;Chung, Wankyun;Youm, Youngil;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.243-246
    • /
    • 1996
  • Modular robot manipulator is a robotic system assembled from discrete joints and links into one of many possible manipulator configurations. This paper describes the design method of newly developed modular robot manipulator and the methodology of a task based reconfiguration of it. New locking mechanism is proposed and it provides quick coupling and decoupling. A parallel connection method is devised and it makes modular robot manipulator working well and the number of components on each module reduced. To automatically determine a sufficient or optimal arrangement of the modules for a given task, we also devise an algorithm that automatically generates forward and inverse manipulator kinematics, and we propose an algorithm which maps task specifications to the optimized manipulator configurations. Efficient genetic algorithms are generated and used to search for a optimal manipulator from task specifications. A few of design examples are shown.

  • PDF

The Eclipse-II Parallel Mechanism for Motion Simulators

  • Kim, Jongwon;Hwang, Jae-Chul;Kim, Jin-Sung;Park, Frank C.;Cho, Young-Man
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.286-291
    • /
    • 2002
  • We present the analysis and design of a new six degree-of-freedom parallel mechanism, Eclipse-II, which can be used as a basis for general motion simulators. This mechanism allows x, y and z-axis translations and a, b and c-axis rotations. Most significantly, it presents the advantage of enabling continuous 360 degrees spinning of the platform. We first describe the computational procedures for the forward and in inverse kinematics of the Eclipse-II. Next, the complete singularity analysis is presented for the two cases of end-effector and actuator singularities. Two additional actuators are added to the original mechanism to eliminate both types of singularities with in the workspace. Some practical aspects of the prototype development are introduced.

  • PDF

Synthesis and Analysis of a New Class of Spatial4-DOF Parallel Mechanism with Two Platforms (두 개의 플랫폼을 가지는 새로운 타입의 공간 4 자유도 병력기구의 조합 및해석)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1482-1487
    • /
    • 2003
  • This paper presents a new family of 4-DoF parallel mechanism with two platforms. The new mechanism is composed of front and rear platforms, and three limbs. Two limbs with 6dof joint (P-P-S-P) are attached to the each platform and are perpendicular to baseplate, while the middle limb with 4-Dof joints (R-R-R-P or R-R-P-P) is attached to the revolute joint that connect front and rear platform. The two-DoF-driving mechanism at the middle limb with two base-fixed prismatic actuators can generate the heaving and roll motions or two translational motions. Therefore, Therefore, the new 4-Dof parallel mechanism (1T-3R) can generate pitch motions at each platforms, roll, and heaving motions, while another type of new 4-Dof parallel mechanism (2T-2R) can generate pitch motions at each platforms, x and z translational motions. For 1T-3R mechanism, kinematic analyses including inverse, forward kinematics, and Jacobian are performed.

  • PDF

Design of a User-Oriented 6-DOF Parallel Haptic Hand Controller (사용자를 고려한 병렬형 6자유도 햅틱 핸드 콘트롤러의 설계)

  • Ryu, Dong-Seok;Kwon, Tae-Yong;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.313-318
    • /
    • 2001
  • A haptic hand controller operated by the user's hand can receive information on position and orientation of the hand and display force and moment generated in the virtual environment to the hand. This paper presents a design method for KU-HHC, 6 DOF Korea University-haptic hand controller, which allows separation of workspace from linkage mechanism in consideration of the efficient user operation. First, the 3 DOF mechanism in which all the actuators are mounted on the fixed base is developed by combining a 5-bar linkage and gimbal mechanism. Then, the 6 DOF HHC is designed by connecting the two 3 DOF devices through a handle. This paper presents the forward and inverse kinematics for this device and Jacobian analysis. Improvement of the kinematic characteristics using performance index is also discussed. The hand controller KU-HHC based on this design concept and kinematic analysis was manufactured and shows excellent performance.

  • PDF

Analysis of Kinematic Mapping Between an Exoskeleton Master Robot and a Human Like Slave Robot With Two Arms

  • Song, Deok-Hee;Lee, Woon-Kyu;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2154-2159
    • /
    • 2005
  • This paper presents the kinematic analysis of two robots, an exoskeleton type master robot and a human like slave robot with two arms. Two robots are designed and built to be equivalent as motion following robots. The operator wears the exoskeleton robot to generate motions, then the slave robot is required to follow after the motion of the master robot. However, different kinematic configuration yields position mismatches of the end-effectors. To synchronize motions of two robots, kinematic analysis of mapping is analyzed. The forward and inverse kinematics have been simulated and the corresponding experiments are also conducted to confirm the proposed mapping analysis.

  • PDF

Generation of Constant Orientation in Industrial Robots (산업용 로봇의 일정한 방향성 생성)

  • 이승황;양승한;박용국
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • In general there are many degrees of freedom(DOFs) in industrial robots. So they have many poses of several special end-effectors positions and orientations. For that reason, industrial robots are used in a wide scope of industrial applica-tions such as welding, spray painting, deburring, and so on. In this research, an off-line continuous path planning method based on linear interpolation with parabolic blend is developed. The method safely maintains the constant orientation for base frame and end-effectors path within allowable error and minimizes the number of segments in path. This algorithm may apply to welding and painting in which the orientation is particularly significant. The simulation study of cartesian curve is carried out to show the performance of this algorithm.

  • PDF

Kinematic Modeling of Mobile Robots by Transfer Method of Augmented Generalized Coordinates (확장된 좌표계 전환기법에 의한 모바일 로봇의 기구학 모델링)

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.233-242
    • /
    • 2002
  • A kinematic modeling method is proposed which models the sliding and skidding at the wheels as pseudo joints and utilizes those pseudo joint variables as augmented variables. Kinematic models of various type of wheels are derived based on this modeling method. Then, the transfer method of augmented generalized coordinates is applied to obtain inverse and forward kinematic models of mobile robots. The kinematic models of five different types of planar mobile robots are derided to show the effectiveness of the proposed modeling method.

A Study on the Workspace of a Parallel Robotic Wrist (평행구조 로보트 손목기구의 작업공간에 대한 연구)

  • 양정모;백윤수;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.893-900
    • /
    • 1994
  • In this study, workspace analysis has been performed for a Clemens Coupling type parallel robotic wrist with four degrees of freedom such as three angular degrees of freedom and 1 plunge motion. Because of plunge motion, this mechanism has no singular point that the general roll-pitch-roll mechanisms have. Also, proposed mechanism performs larger load, faster motion, with less weight and has better structural characteristics such as higher stiffness and strength to weight ratio compared with serial type mechanisms. As a basic step for position control, the closed form solution of forward and inverse kinematics are proposed and workspace is analyzed and plotted by applying triangle tracer method for workspace boundary tracing.

  • PDF

Kinematic Analysis and Optimal Design of 2RPR-RP Parallel Manipulator (2RPR-RP 병렬 기구의 기구학 해석 및 최적설계)

  • Nam, Yun-Joo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1509-1517
    • /
    • 2005
  • This paper presents the two degree-of-freedom(DOF) planar parallel mechanism called 2R$\underline{P}$R-RP manipulator, whose degree-of freedom is dependent on a passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed analytically: the inverse and forward kinematic problems are solved in the closed font the practical workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters and the operating limits of the actuators, the optimization of the mechanism is performed considering its dexterity and stiffness. Finally, the kinematic performances of the optimized mechanism are evaluated through comparing to the 5-bar parallel manipulator.

Optimal Kinematic Design of Planar Parallel Mechanisms: Application to 2RRR-RP Mechanism (평면형 병렬 기구의 기구학적 최적설계: 2RRR-RP기구에 적용)

  • Nam Yun-Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.464-472
    • /
    • 2006
  • This paper presents the two degree-of-freedom (DOF) planar parallel mechanism, called the $2{\underline{R}}RR-RP$ manipulator, whose degree-of-freedom is dependent on an additional passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed: the inverse and forward kinematic problems are analytically solved, the workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters the optimization of the mechanism is performed considering its dexterity, stiffness, and space utilization. Finally, the kinematic performances of the optimized mechanism are evaluated through the comparison study to the conventional 5-bar parallel manipulator.