• Title/Summary/Keyword: formulation design

Search Result 981, Processing Time 0.028 seconds

Design of the Well-Conditioned Observer - A Linear Matrix Inequality Approach - (Well-Conditioned 관측기 설계 - A Linear Matrix Inequality Approach -)

  • Jung, Jong-Chul;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2004
  • In this paper, the well-conditioned observer for a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic uncertainties such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic uncertainties such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_{2}$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic uncertainties. In stochastic viewpoints, the estimation variance represents the robustness to the stochastic uncertainties and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

Quality Characteristics of Rice Cookies Prepared with Stevia rebaudiana Leaf (스테비아(Stevia rebaudiana)잎 첨가 쌀쿠키의 품질 특성)

  • Kim, Dah-Sol;Shin, Jihun;Joo, Nami
    • Journal of the Korean Dietetic Association
    • /
    • v.23 no.1
    • /
    • pp.14-26
    • /
    • 2017
  • The purpose of this study was to determine the optimal recipe of rice cookies with two different amounts of Stevia rebaudiana leaf and grape seed oil, using a central composite design (CCD). In addition, mixing conditions of rice cookies were optimized by sensory evaluation and mechanical and physicochemical analysis using response surface methodology (RSM). RSM was used to obtain 10 experimental points (including two replicates of Stevia rebaudiana leaf and Grape seed oil), and the formulation of Stevia rebaudiana leaf added rice cookies was optimized using rheology. The results of mechanical and physicochemical analysis showed significant values for lightness, redness, yellowness, hardness, spread factor, loss rate, leavening rate, sweetness, moisture, pH, and density (P<0.001), results of the sensory evaluation showed significant values for color, flavor, taste, texture, appearance, and overall quality (P<0.05). As a results, optimal sensory ratio was found to be 1.98 g of Stevia rebaudiana leaf and 37.94 g of Grape seed oil.

Shear locking-free earthquake analysis of thick and thin plates using Mindlin's theory

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.373-385
    • /
    • 2009
  • The purpose of this paper is to study shear locking-free parametric earthquake analysis of thick and thin plates using Mindlin's theory, to determine the effects of the thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses of thick and thin plates subjected to earthquake excitations. In the analysis, finite element method is used for spatial integration and the Newmark-${\beta}$ method is used for the time integration. Finite element formulation of the equations of the thick plate theory is derived by using higher order displacement shape functions. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 17-noded finite element is used. Graphs are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that 17-noded finite element can be effectively used in the earthquake analysis of thick and thin plates. It is also concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio.

An Experimental Study on the Effect of the Air Temperature on the Air-Side Heat-Transfer Coefficient and the Friction Factor of a Fin-and-Tube Heat Exchanger (외기 온도 변화가 핀-관 열교환기의 공기측 열전달계수와 마찰계수에 미치는 영향에 관한 실험적 연구)

  • Kim, Nae-Hyun;Cho, Honggi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.149-158
    • /
    • 2017
  • In general, the air-side j and f factors of evaporators or condensers are obtained through single-design tests performed under air-dry and wet-bulb temperatures. Considering that the indoor or outdoor air temperatures vary significantly during the operation of an air conditioner, it is necessary to confirm that the experimentally-obtained j and f factors are widely applicable under variable air conditions. In this study, a series of tests were conducted on a two-row slit-finned heat exchanger to confirm the applicability. The results showed that, for the dry-surface condition, the changes of the tube-side water temperature, water-flow rate, and air temperature had virtually no effect on the air-side j and f factors. For the wet condition, however, the f factor was significantly affected by these changes; contrarily, the j factor is relatively independent regarding this change. The formulation of the possible reasoning is in consideration of the condensation behavior underneath the tube. The wet-surface j and f factors are larger than those of the dry surface, with a larger amount for the f factor.

Study of Convective Flow and Heat Transfer Phenomena in the Phase Change Material (상변화물질의 대류유동 및 열전달 현상에 관한 연구)

  • Shon, Sang-Suk;Lee, Chae-Moon;Lee, Jae-Heon;Yim, Chang-Soon
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1986
  • The objective of this study is to report on the characterics of convective flow and heat transfer during metling process in order to provide design information for thermal energy storage systems which use phase change material. In present study, flow and heat transfer characteristics of the Phase Change Material in the Open Top Model (O.T.M) and in the Closed Top Model (C.T.M) were studied numerically by the control volume formulation using the algebraic non-orthogonal coordinate transformation. For the calculation procedure, the physical properties of fluid are assumed to be constant except density which is linely dependent on temperature in the bouyancy term of momentum equations. At start of melting process, the thickness of melting layer is assumed from the Stefan Problem assumption. The heat transfer results of Open Top Model and Closed Top Model are compared with the parameters of Grashof number and aspect ratio. It was found that heat transfer phenomena in melted region was greatly affected by buoyancy-driven natural convection and the melting distance of Open Top Model at the upper region is greater than that of Closed Top Model.

  • PDF

Multibeam Satellite Frequency/Time Duality Study and Capacity Optimization

  • Lei, Jiang;Vazquez-Castro, Maria Angeles
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.472-480
    • /
    • 2011
  • In this paper, we investigate two new candidate transmission schemes, non-orthogonal frequency reuse (NOFR) and beam-hopping (BH). They operate in different domains (frequency and time/space, respectively), and we want to know which domain shows overall best performance. We propose a novel formulation of the signal-to-interference plus noise ratio (SINR) which allows us to prove the frequency/time duality of these schemes. Further, we propose two novel capacity optimization approaches assuming per-beam SINR constraints in order to use the satellite resources (e.g., power and bandwidth) more efficiently. Moreover, we develop a general methodology to include technological constraints due to realistic implementations, and obtain the main factors that prevent the two technologies dual of each other in practice, and formulate the technological gap between them. The Shannon capacity (upper bound) and current state-of-the-art coding and modulations are analyzed in order to quantify the gap and to evaluate the performance of the two candidate schemes. Simulation results show significant improvements in terms of power gain, spectral efficiency and traffic matching ratio when comparing with conventional systems, which are designed based on uniform bandwidth and power allocation. The results also show that BH system turns out to show a less complex design and performs better than NOFR system specially for non-real time services.

A Study on Contact Deformation of Automotive Door Weatherstrip Using Non-linear Finite Element Method (비선형 유한요소법을 이용한 자동차 도어 웨더스트립의 접촉변형에 관한 연구)

  • Kim Byung Soo;Moon Byung-Young;Kim Kwang-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • In vehicle door system, weatherstrip seals protect passengers form noise, dust, rain and wind out of the vehicle. The higher efficient a weatherstrip is, the more durable it is in contact between the door and body frame. In this study, nonlinear finite element(FE) analysis is performed to obtain cauchy-stresses, displacements and reaction forces of the weatherstrip. Mechanical properties of the weatherstrip is obtained by uniaxial tension test. The MARC which is a commercial software for the nonlinear analysis of a flexible FE model is used. Twenty-one cases of the FE model are developed by using Ogden-foam formulation. In the results of nonlinear FE analysis, the most valuable deformation of the weatherstrip occurred when displacement control value reaches 7.2mm. Severe deformation is observed as the displacement control value become more increased. When the weatherstrip is designed, it would be considered that the displacement value of the weatherstrip has to be less than 7.2mm.

Hourglass Control in Rigid-Plastic Finite Element Analysis (강소성 유한요소해석에서 Hourglass Control)

  • Gang, Jeong-Jin;O, Su-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1290-1300
    • /
    • 1996
  • The finite element method, based on rigid-plastic formulation, is widely used to simulate metal forming processes. In order to improve the computational efficiency of the rigid-plastic FEM, one-point integration is used to evaluate the stiffness matrix with four-node rectangular elements and eight-node brick elements. In order to control the hourglass modes, hourglass strain rate components were introduced and included in the effective strain rate definition, Numerical tests have shown that the proposed one-point integration scheme reduces the stiffness matrix evaluation time without deteriorating the convergence behavior of Newton-Raphson method. Simulations of a ring compression, a plane-strain closed-die forging and the three-dimensional spike forging processes were carried out by using the proposed integration method. The simulation results are compared to those obtained by applying the conventional integraiton method in terms of the solution accuracy and computational efficiency.

Strength degradation of reinforced concrete piers wrapped with steel plates under local corrosion

  • Gao, Shengbin;Ni, Jie;Zhang, Daxu;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.753-765
    • /
    • 2017
  • This paper aims to investigate the strength degradation of reinforced concrete piers wrapped with steel plates which corrode at the pier base by employing a three dimensional elasto-plastic finite element formulation. The prediction accuracy of the employed finite element analysis method is firstly verified by comparing the analytical results with test results. Then, a series of parametric studies is carried out to investigate the effects of steel plate's corrosion position along width direction, corrosion depth along plate thickness, corrosion range along width direction, and steel plate-concrete bonding degradation on the strength of the piers. It is observed that the strength degradation of the piers is closely related to steel plate's corrosion position, corrosion depth and corrosion range in the case of local corrosion on the webs. In contrast, when the base of flanges corrodes, the strength degradation of the piers is only related to steel plate's corrosion depth and corrosion range, and the influence of corrosion position on the strength degradation is very gentle. Furthermore, the strength of the piers decreases with the degradation of steel plate-concrete bonding behavior. Finally, the maximum strength of the piers obtained from numerical analysis corresponding to different bonding behavior is compared with theoretical results within an accepted error.

Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect

  • Katariya, Pankaj V.;Panda, Subrata Kumar
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.279-288
    • /
    • 2020
  • The computational post-buckling strength of the tilted sandwich composite shell structure is evaluated in this article. The computational responses are obtained using a mathematical model derived using the higher-order type of polynomial kinematic in association with the through-thickness stretching effect. Also, the sandwich deformation behaviour of the flexible soft-core sandwich structural model is expressed mathematically with the help of a generic nonlinear strain theory i.e. Green-Lagrange type strain-displacement relations. Subsequently, the model includes all of the nonlinear strain terms to account the actual deformation and discretized via displacement type of finite element. Further, the computer code is prepared (MATLAB environment) using the derived higher-order formulation in association with the direct iterative technique for the computation of temperature carrying capacity of the soft-core sandwich within the post-buckled regime. Further, the nonlinear finite element model has been tested to show its accuracy by solving a few numerical experimentations as same as the published example including the consistency behaviour. Lastly, the derived model is utilized to find the temperature load-carrying capacity under the influences of variable factors affecting the soft-core type sandwich structural design in the small (finite) strain and large deformation regime including the effect of tilt angle.