• Title/Summary/Keyword: formulation design

Search Result 981, Processing Time 0.025 seconds

Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation (직접미분법을 이용한 현가장치의 기구학적 민감도해석)

  • 민현기;탁태오;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

Genetic Algorithm Applied to Optimal Design of a Truss Structure (유전자 알고리즘을 이용한 트러스의 최적단면설계)

  • 허현행;박창훈;윤종열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.155-162
    • /
    • 1997
  • Genetic algorithms(GA) are based on the principles of natural genetics and natural selection. The algorithm searches an optimum design point using information based on the fitness function evaluated for the population of many design points. An application of GA on optimal design of a truss structure is studied. The terminology and the operating procedures common in GA are formalized by establishing similarities between GA and genetics from biology. In using GA, (1) coding of the design variables, (2) formulation of the fitness function, (3) setting of the termination condition, and (4) establishment of the probabilities are essential. These four points are discussed in the paper.

  • PDF

Design of Thin RC Absorbers Using a Silver Nanowire Resistive Screen

  • Lee, Junho;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.106-111
    • /
    • 2016
  • A resistive and capacitive (RC) microwave absorber with a layer thickness less than a quarter of a wavelength is investigated based on closed-form design equations, which are derived from the equivalent circuit of the RC absorber. The RC absorber is shown to have a theoretical 90% absorption bandwidth of 93% when the electrical layer thickness is $57^{\circ}$ (about ${\lambda}_0/6$). The trade-offs between the layer thickness and the absorption bandwidth are also elucidated. The presented formulation is validated by a design example at 3 GHz. The RC absorber is realized using a silver nanowire resistive rectangular structure with surrounding gaps. The measured 90% absorption bandwidth with a layer thickness of ${\lambda}_0/8$ is 76% from 2.3 GHz to 5.1 GHz in accordance with the theory and EM simulations. The presented design methodology is scalable to other frequencies.

Development of an analytical method for optimum design of reinforced concrete beams considering both flexural and shear effects

  • Zivari, Ahmad;Habibi, Alireza;Khaledy, Nima
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.117-123
    • /
    • 2019
  • Optimization is an important subject which is widely used in engineering problems. In this paper, an analytical method is developed for optimum design of reinforced concrete beams considering both flexural and shear effects. A closed-form formulation is derived for optimal height and rebar of beams. The total material cost of steel and concrete is considered as the objective function which is minimized during the optimization process. The ultimate flexural and shear capacities of the beam are considered as the main constraints. The ultimate limit state is considered for deriving the relations for flexural capacity of the beam. The design requirements are considered according to the item 9 of the Iranian National Building. Analytical formulas and some curves are proposed to be used for optimum design of RC beams. The proposed method can be used to perform the optimization of RC beams without the need of any prior knowledge in optimization. Also, the results of the studied numerical example show that the proposed method results in a better design comparing with the other methods.

From An Imitator to a Pioneer in Design Strategy -A Study on Progresses of the Design Promotion on Strategy in Korea since 1950s- (디자인 전략의 모방자에서 선구자로 -한국 디자인 진흥 전략의 발전 과정에 관한 고찰-)

  • Chung, Kyung-Won
    • Archives of design research
    • /
    • v.17 no.4
    • /
    • pp.385-396
    • /
    • 2004
  • The progresses in the Korean design promotion strategy since the 1950s have been studied. Korean design strategy was somewhat limited in the imitator who copied advanced nations strategies at the beginning. Their strategies changed to adopter and/or modifier in conjunction with the Korean economic development. It has pursued pioneer strategies since 2000. This study has identified the changing environment of design, the nature of design promotion strategy, the historical background and current states of world design promotion. Finally, it has suggested four challenges for transforming Korea into the world class design nation: Formulation of law for cultivating the design industry; enhancing the self-survival power of Korea Institute of Design Promotion(KIDP), the establishment of the Korea Design Promotion Foundation, upgrading the Korea Federation of Design Associations(KFDA).

  • PDF

Solving design optimization problems via hunting search algorithm with Levy flights

  • Dogan, Erkan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.351-368
    • /
    • 2014
  • This study presents a hunting search based optimum design algorithm for engineering optimization problems. Hunting search algorithm is an optimum design method inspired by group hunting of animals such as wolves, lions, and dolphins. Each of these hunters employs hunting in a different way. However, they are common in that all of them search for a prey in a group. Hunters encircle the prey and the ring of siege is tightened gradually until it is caught. Hunting search algorithm is employed for the automation of optimum design process, during which the design variables are selected for the minimum objective function value controlled by the design restrictions. Three different examples, namely welded beam, cellular beam and moment resisting steel frame are selected as numerical design problems and solved for the optimum solution. Each example differs in the following ways: Unlike welded beam design problem having continuous design variables, steel frame and cellular beam design problems include discrete design variables. Moreover, while the cellular beam is designed under the provisions of BS 5960, LRFD-AISC (Load and Resistant Factor Design-American Institute of Steel Construction) is considered for the formulation of moment resisting steel frame. Levy Flights is adapted to the simple hunting search algorithm for better search. For comparison, same design examples are also solved by using some other well-known search methods in the literature. Results reveal that hunting search shows good performance in finding optimum solutions for each design problem.

An Implementation of Knowledge Based Engineering Design System for the Front Section of the Excavator with an Expert Shell (전문가 쉘(Shell)을 이용한 굴삭기 프론트 지식기반설계 시스템 구현)

  • Shin D.J.;Bae I.J.;Lee S.H.;Noh T.S.;Kim S.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.75-80
    • /
    • 2005
  • A design for the front section of an excavator requires kinematic and kinetic mechanism consideration for several configurations. Key parameters for an appropriate configuration can be obtained through a mechanical verification and numerical formulation with a design expert's know-how. In this paper, we propose a knowledge-based system with an expert-shell(CATIA) and Visual Basic to assist for the design of the front section of an excavator. The designers can achieve more efficient design through a CAD model, implemented design knowledge, and a user friendly interface. The implemented design knowledge is retrieved through the whole design process from an early design stage to a detailed design stage based on the multiple levels of abstraction scheme.

  • PDF

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Lee Jong-Min;Seo Dong-Joo;Lee Tae-Gyun;Lee Joung-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.267-275
    • /
    • 2005
  • Prestressed concrete girder(PSC girder) bridges have been used widely at the railway as well as highway because they are great in the functional and economical efficiency. Also they have the advantage of convenience of design and construction. However it could be easily verified that the section of PSC girder is excessive design, which has much redundancy against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. In order to effective optimum design, design variables are formulated as PSC girder sectional dimension and girder space. The objective is adopted as total cost of PSC girder railway bridge. Also, constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder railway bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety and economical efficiency all together.

Design Method of a Parallel Feedforward Compensator for Passivation of Linear Systems (선형 시스템 수동화를 위한 병렬 앞먹임 보상기 설계방법 연구)

  • 손영익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.590-596
    • /
    • 2004
  • A passivity-based dynamic output feedback controller design is considered for a finite collection of non-square linear systems. Design of a single controller for a set of plants i.e. simultaneous stabilization is an important issue in the area of robust control design. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedforward compensator is given by the static output feedback formulation. In contrast to the previous result [1], a technical condition for constructing the parallel feedforward compensator is removed by proposing a new type of the parallel compensator.

Material property optimization of Pultruded FRP bridge deck section (인발성형 FRP 바닥판의 물성 최적화)

  • 최영민;조효남;이종순;김희성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.135-142
    • /
    • 2004
  • The apparent advantages of FRP (fiber reinforced plastics) composites over the conventional structural materials may be attributed to their high specific strength and stiffness. Other affordable properties of FRPs including an excellent durability make them particularly attractive for the structures in severe service conditions. Therefore, the material and sectional properties of a FRP structural component should be designed to meet its specific requirements and service conditions. This paper is performed the material property optimization under optimum design of pultruded FRP bridge deck section. In the problem formulation, an objective function is selected to minimize the maximum R(strength ratio). The thickness of layers, volumes of fibers and matrix fiber orientation, and stacking sequence of FRPs are used as the design variables. Strength ratio in the design code, material failure criteria and pultruded manufacture thickness are selected as the design constraints to enhance the material performance of FRP decks. From the results of the numerical investigation, we obtained the optimum deck section profile for conventional using object.

  • PDF