• Title/Summary/Keyword: formulation analysis

Search Result 2,603, Processing Time 0.032 seconds

Static equilibrium and linear vibration analysis of a high speed electric train system (고속전철 시스템의 정적평형 및 선형진동 해석)

  • 김종인;유홍희;황요하
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • A formulation to perform static equilibrium and linear vibration analysis is presented in this paper. The formulation employs minimum number of equations of motion which are derived by using a partial velocity matrix. The static equilibrium analysis is performed first, then the linear vibration analysis is performed at the static equilibrium position. By using the formulation presented in this paper, static equilibrium and linear vibration analysis of a high speed electric train system are performed. A single bogie system, a power car vehicle, and a train system which consists of five vehicles are analyzed, respectively. Natural frequencies and a few lowest mode shapes of the two are identified in this paper.

  • PDF

Simultaneous Analysis of the Chemical Compounds in Ojeok-san and Its Antioxidative Activity (오적산의 다성분 동시분석과 항산화 효과)

  • Kim, Seong-Sil;Kim, Jung-Hoon;Kim, Ohn Soon;Kim, Yeji;Shin, Hyeun-Kyoo;Seo, Chang-Seob
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.4
    • /
    • pp.362-367
    • /
    • 2013
  • Ojeok-san has been commonly used to treat low back pain disease. We performed the experiments on simultaneous analysis of 11 compounds and antioxidant effects of Ojeok-san. A HPLC method was established for simultaneous analysis of 11 compounds. The detection wavelengths were set at 230, 254, 280, 320, and 330 nm. The detected 11 compounds from Ojeok-san water extract showed good linearity($r^2{\geq}0.9997$). Limit of detection(LOD) and limit of quantification(LOQ) were 0.04-0.87 ${\mu}g/mL$ and 0.13-2.63 ${\mu}g/mL$, respectively. The antioxidant effects of Ojeok-san water extract were investigated by DPPH and ABTS assays. Ojeok-san water extract significantly increased the DPPH and ABTS radical scavenging effects in a dose-dependent manner. The $RC_{50}$ value of Ojeok-san on DPPH radical was 284.71 ${\mu}g/mL$ and that of ABTS radical was 96.16 ${\mu}g/mL$.

Finite Element Analysis of the Tire Contact Problem (타이어 접지문제의 유한요소 응력해석)

  • Han, Y.H.;Kim, Y.H.;Huh, H.;Kwak, Y.K.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.820-830
    • /
    • 1989
  • The tire inflation and contact problem has been solved by a finite element method. The finite element formulation is derived from the equilibrium equations by the principle of virtual work in the form of an updated Lagrangian formulation for incremental analysis. Then, a contact formulation is added to the finite element formulation to calculate stress state of tire in contact with flat rigid road under the load due to the self-weight of a vehicle. In the finite element analysis, equations of effective material properties are introduced to analyze a plane strain model of the shell-like tire by considering the bending effect of reinforced steel cords. The proposed equations of effective material properties produced stress concentration around the edge of belt layers, which does not appear when other well-known equations of material properties are adopted. The result from the above algorithm demonstrates the validity of the formulation and the proposed equations for the effective elastic constants. The result fully interprets the cause of separation between belt layers by showing the stress concentration.

Variable kinematic beam elements for electro-mechanical analysis

  • Miglioretti, F.;Carrera, E.;Petrolo, M.
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.517-546
    • /
    • 2014
  • This paper proposes a refined electro-mechanical beam formulation. Lagrange-type polynomials are used to interpolate the unknowns over the beam cross section. Three- (L3), four- (L4), and nine-point(L9) polynomials are considered which lead to linear, bi-linear, and quadratic displacement field approximations over the beam cross-section. Finite elements are obtained by employing the principle of virtual displacements in conjunction with the Carrera Unified Formulation (CUF). The finite element matrices and vectors are expressed in terms of fundamental nuclei whose forms do not depend on the assumptions made. Additional refined beam models are implemented by introducing further discretizations, over the beam cross-section. Some assessments from bibliography have been solved in order to validate the electro-mechanical formulation. The investigations conducted show that the present formulation is able to detect the electro-mechanical interaction.

Failure analysis of composite plates under static and dynamic loading

  • Ray, Chaitali;Majumder, Somnath
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • The present paper deals with the first ply failure analysis of the laminated composite plates under various static and dynamic loading conditions. Static analysis has been carried out under patch load and triangular load. The dynamic failure analysis has been carried out under triangular pulse load. The formulation has been carried out using the finite element method and a computer code has been developed. The first order shear deformation theory has been applied in the present formulation. The displacement time history analysis of laminated composite plate has been carried out and the results are compared with those published in literature to validate the formulation. The first ply failure load for laminated composite plates with various lamination schemes under static and dynamic loading conditions has been calculated using various failure criteria. The failure index-time history analysis has also been carried out and presented in this paper.

Finite element analysis for laterally loaded piles in sloping ground

  • Sawant, Vishwas A.;Shukla, Sanjay Kumar
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.59-78
    • /
    • 2012
  • The available analytical methods of analysis for laterally loaded piles in level ground cannot be directly applied to such piles in sloping ground. With the commercially available software, the simulation of the appropriate field condition is a challenging task, and the results are subjective. Therefore, it becomes essential to understand the process of development of a user-framed numerical formulation, which may be used easily as per the specific site conditions without depending on other indirect methods of analysis as well as on the software. In the present study, a detailed three-dimensional finite element formulation is presented for the analysis of laterally loaded piles in sloping ground developing the 18 node triangular prism elements. An application of the numerical formulation has been illustrated for the pile located at the crest of the slope and for the pile located at some edge distance from the crest. The specific examples show that at any given depth, the displacement and bending moment increase with an increase in slope of the ground, whereas they decrease with increasing edge distance.

Static equilibrium and linear vibration analysis of a high speed electric train system (고속 전철 시스템의 정적 평형 및 선형 진동 해석)

  • 김종인;유홍희;황요하
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.305-312
    • /
    • 1998
  • A formulation to perform static equilibrium and linear vibration analysis is presented in this paper. The formulation employs minimum number of equations of motion which are derived by using a partial velocity matrix, The static equilibrium analysis is performed first, then the linear vibration analysis is performed at the static equilibrium position. By using the formulation presented in this paper, static equilibrium and linear vibration analysis of a high speed electric train system are performed. A single bogie system, a power vehicle, and a train system which consists of five vehicles are analyzed, respectively. Natural frequencies and a few lowest mode shapes of the three are identified in this paper.

  • PDF

Analysis of Packing Procedure Using Penalty Formulation in Injection Molding (사출성형에서의 Penalty Formulation을 이용한 Packing 과정 해석)

  • Kang, Sung-Yong;Kim, Seung-Mo;Kim, Sung-Kyung;Lee, Woo-Il;Kim, Dae-Hwan;Kim, Woo-Kyu;Kim, Hyung-Chae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.916-921
    • /
    • 2004
  • The penalty method has been widely applied to analyses of incompressible fluid flow. However, we have not yet found any prior studies that employed penalty method to analyze compressible fluid flow. In this study, with an eye on the apparent similarity between the slight compressible formulation and the penalty formulation, we have proposed a new approximate approach that can analyze compressible packing process using the penalty parameter l. Based on the assumption of the isothermal flow, a set of reference solutions was obtained to verify the validity of the proposed scheme. Furthermore, we have applied the proposed scheme to the analysis of the packing process of different cases.

  • PDF

Electrochemical Response of Polymer Actuators using Finite Element Formulation and ANSYS/Emag

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.369-375
    • /
    • 2010
  • The two-dimensional finite element formulation for the basic field equations governing electrochemical responses of ionic conducting polymer-metal composite(IPMC) actuators is proposed in the present study. Biaxial deformation of a platinum plated Nafion actuator having 4 electrodes is dominated by electro-osmosis of hydrated ions and self-diffusion of free water molecules. Some numerical studies for IPMC actuators with electric field are carried out in order to show the validity of the proposed formulation and electric field analysis for the initial condition of total charge distribution are conducted using commercial code ANSYS/Emag.

Analysis of RC beams subjected to shock loading using a modified fibre element formulation

  • Valipour, Hamid R.;Huynh, Luan;Foster, Stephen J.
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.377-390
    • /
    • 2009
  • In this paper an improved one-dimensional frame element for modelling of reinforced concrete beams and columns subjected to impact is presented. The model is developed in the framework of a flexibility fibre element formulation that ignores the shear effect at material level. However, a simple shear cap is introduced at section level to take account of possible shear failure. The effect of strain rate at the fibre level is taken into account by using the dynamic increase factor (DIF) concept for steel and concrete. The capability of the formulation for estimating the element response history is demonstrated by some numerical examples and it is shown that the developed 1D element has the potential to be used for dynamic analysis of large framed structures subjected to impact of air blast and rigid objects.