• Title/Summary/Keyword: formation mechanism

Search Result 2,646, Processing Time 0.022 seconds

A Study on the Bburr Formation Mechanism in Clay Machining (Clay가공에 있어서 Burr 생성기구에 관한 연구)

  • Yang, Gyun-Ui;Go, Seong-Rim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.73-84
    • /
    • 1990
  • A burr has been defined as an undesirable projection of material formed as the result of plastic flow from a cutting or shearing operation. It is Unavoidable in all kinds of machining operation. This paper describe the burr formation mechanism which is based on the behavior of workpiece material during orthogonal machining of the clay on the milling machine. Specially in this report the rollover burr is dealt as a specific case of the chip formation in the final stage of cutting. The negative shear angle is introduced as an important features of burr formation. It is found that the burr formation process is divided into three stage-initiation, development of negative shearing, and formation of the burr with appropriate assumptions. Using above the burr formation mechanism, the size of burr can be estimated by cutting conditions.

  • PDF

Fabrication of AlN Powder by Self-propagating High-temperature Synthesis II. The formation Mechanism of AlN Powder from Al Powder (자전 고온 반응 합성법에 의한 AlN 분말의 제조 II, Al 분말로부터 AlN 분말의 형성기구)

  • 안도환;전형조;김석윤;김용석
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.10
    • /
    • pp.1089-1094
    • /
    • 1996
  • In this study the formation mechanism of AlN synthesized by SHS(Self-propagating high-temperature Syn-thesis) was studied in order to obtain uniform AlN powder size and morphology. Based on the morphology of AlN synthesized and the calculation of the temperature of Al powder as a function AlN layer thickness the formation mechanism of AlN was proposed.

  • PDF

MODELLING STUDY OF THE EFFECT OF CHEMICAL ADDITIVES ON SOOT PRECURSORS REDUCTION

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.501-508
    • /
    • 2006
  • The effect of chemical additives, such as dimethyl ether(DME), ethanol, carbon disulfide on the soot formation were examined numerically. ill this study, the Frenklach soot mechanism was used as a base mechanism to predict the soot formation in the ethane flame. The combination of Westbrook's DME mechanism, Marinov's ethanol mechanism, and chemical kinetic mechanism for hydrogen sulfide and carbon disulfide flames was made with the base mechanism because the DME, ethanol, $CS_2$ additives are added into the ethane fuel. CHEMKIN code was used as a numerical analysis software to simulate the effect of chemical additives on reduction of the polycyclic aromatic hydrocarbons(PAH's) which are soot precursors. From the numerical results it is observed that addition of DME, ethanol and $CS_2$ into ethane fuel can reduce PAH species significantly. That means theses additives can reduce soot formation significantly. Results also strongly suggest suppression of soot formation by these additives to be mainly a chemical effect. Hand OH radicals may be the key species to the reduction of PAH species for additives.

Observation of Nugget Formation Mechanism by using High Speed Camera (고속카메라를 이용한 저항 점 용접의 너겟 형성 메커니즘 관찰)

  • 조용준;이세헌
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.43-45
    • /
    • 2000
  • Resistance Spot Welding has been one of the important process in the sheet metal fabrication of auto-body industry It is well known that the nugget formation of RSW is the major factor for the strength of the body. A high speed camera was used to consider initial melting and growth of the weld nugget in order to find out the nugget formation mechanism. It was observed that such mechanism had an effect on the dynamic resistance, which was a process parameter of resistance spot welding. Also, the relationship between the mechanism and process parameter was considered for the industrial application.

  • PDF

Organizational-Economic Mechanism of Providing Sustainability of the Region's Development Based on the Impact of the Potential-Forming Space in the Conditions of the Creative Economy Formation

  • Khanin, Semen;Derhaliuk, Marta;Arefieva, Olena;Murashko, Mykola;Nusinova, Olena
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.348-356
    • /
    • 2022
  • The article is devoted to substantiation of theoretical and methodical bases of formation of the organizational-economic mechanism of maintenance of stability of development of region on the bases of influence of potential-forming space in the conditions of formation of creative economy. It was found that the organizational-economic mechanism due to its multifaceted nature does not have a single generally accepted definition, and its acceptable scale and complexity is reflected in the structure, which is very dependent on the scope and conditions of its application, can be very different and contain different elements. In view of this, in order to highlight the characteristics that are inherent in the organizational-economic mechanism of sustainable development of the region on the basis of potential-forming space in the formation of creative economy, the article examines the properties and characteristics of direct organizational and economic mechanism. The necessity of basing the process of formation of any organizational-economic mechanism, including the organizational-economic mechanism of ensuring the sustainability of the region on the basis of the potential-forming space in the conditions of creative economy on the system of principles. In this context, the author's vision is proposed and a set of principles for the formation of organizational-economic mechanism for sustainable development of the region on the basis of the potential of the potential-forming space in the creative economy, as well as revealed the essence of each. According to the structural aspect, the organizational-economic mechanism of ensuring the sustainability of the region's development on the basis of the potential-forming space is proposed to be presented as a set of seven stages, which are implemented in a certain sequence. Within the limits of this research the sequence of realization of the stages making process of formation of the organizational-economic mechanism of maintenance of stability of development of region on the basis of influence of potential-forming space in the conditions of formation of creative economy is defined and their maintenance and essence is presented.

Mechanism of the Marine Terraces Formation on the Southeastern Coast in Korea (한국 남동해안 해안단구의 지형형성 mechanism)

  • 윤순옥;황상일
    • Journal of the Korean Geographical Society
    • /
    • v.35 no.1
    • /
    • pp.17-38
    • /
    • 2000
  • The marine terraces often offer come important clues to understand the topographic development during the Quaternary and the present landforms in korea. We examined the mechanism of the marine terraces formation along the coast from Samjung-Ri(community), Guryongpo-Eup(county) to Haseo-Ri, Yangnam-Myun(county), Gyungju-Si(city). Among the various but unique factors of the given coastal environment, which should contribute to the marine terraces formation together, we focused on five possible factors for the present stydy. Geologic difference in bedrocks, protrusion degree of coastiline, topological relief of sea-bottom, fluvial characteristics on land, and pattern of the waves appeared to act cooperatibely on the terrace formation of Southeastem coast in korea, while the fluvial characteristics seemed play a significant but localized role in it. Wide distribution of middle surfaces on the coast of Samjungri-Janggilri could be due to the concentration of the high waves and the weakness of the Tertiary volcanic rocks. For the sporadic distribution of the terraces on the coast of Gupungri-Gyewonri, it seemed attributable to the erosion -susceptible weak bedrock, the coastline of inner bay, shallow sea-bottom with the gentle relief, and other fluvial characteristics with the low divides. Together with the geologic difference in bedrock, other factors including protrusion degree of coast, topological relief of sea-bottom, and the transportation loads by the stream Daejongchon are believed to act cooperatively on the mechanism of the marine terraces formation on the coast of Duwonri-Upchonri.

  • PDF

$TiO_2$ Nanotubes Preparation and Its Formation Mechanism

  • Kang, Young-Gu;Shin, Ki-Seok;Ahn, Sung-Hwan;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.487-493
    • /
    • 2010
  • There has been a controversy on the formation mechanism of $TiO_2$ nanotubes. This study was conducted to elucidate the formation mechanism of $TiO_2$ nanotubes. $TiO_2$ nanotubes were prepared by a hydrothermal method. $TiO_2$ nanotubes formation mechanism was investigated by controlling the formation time. It was found that $TiO_2$ nanotubes were formed by growing, not by wrapping of sheets. The phase structure of hydrogen titanate nanotubes was different from that of $TiO_2$ nanotubes. It is important to wash the sodium titanate nanotubes with an acidic solution to get hydrogen titanate nanotubes and then to calcine the hydrogen titanate nanotubes around $400^{\circ}C$ to obtain $TiO_2$ nanotubes.

Numerical analysis of NOx formation characteristics in CH$_{4}$-air jet diffusion flame (CH$_{4}$-공기 분류 확산화염의 NOx 생성특성에 관한 수치해석)

  • O, Chang-Bo;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.193-204
    • /
    • 1998
  • Numerical analysis was performed with multicomponent transport properties and detailed reaction mechanisms for axisymmetric 2-D CH$_{4}$ jet diffusion flame. Calculations were carried out twice with the $C_{2}$-Thermal Mechanism including $C_{2}$ and thermal NO reactions and the $C_{2}$-Full Mechanism including prompt NO reactions in addition to the above $C_{2}$-Thermal NO mechanism. The results show that the flame structures such as flame temperature, major and minor species concentration are indifferent to respective mechanisms. The production path of Thermal NO is dominant comparing with that of Prompt NO in total NO production of pure CH$_{4}$ jet diffusion flame. This is because thermal NO mechanism mainly contributes to positive formation of NO in the whole flame region, but Prompt NO mechanism contributes to negative formation in the fuel rich region. In addition, 0$_{2}$ penetration near the nozzle outlet affects the flame structures, especially N0$_{2}$ formation characteristics.

Geometrical Analysis on the Formation Mechanism of Milling Burr on Arbitrary Feature (임의형상의 버 발생 메카니즘의 기하학적 해석)

  • 이제열;안용진;김영진
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.222-228
    • /
    • 2001
  • In the milling operation, the burr can be generated on the intersection of cutting tool and workpiece. Due to burr formation, we expect lower efficiency in the operation and the cost increase. In order to understand the burr formation mechanism in the milling operation on the arbitrary feature, we developed an algorithm to analyse and predict the exit burr formation mechanism. Firstly, the recognition of arbitrary shaped workpiece was done through the CAD data. This data includes point information on the vertices of the workpiece. Secondly, tile CAM data regarding tool geometry, tool path, cutting speed, and material data are retrieved to simulate the actual cutting process. Thirdly, we predict the exit burr formation on the edge of workpiece based on the geometric analysis. Lastly, an algorithm implemented in the Windows environment to visualize the burr formation simulation. With this information, we can predict which portion of workpiece would have the exit burr in advance so that we call manage to find a way to minimize the edit burr formation in the actual cutting.

  • PDF

$\beta$-SiC Formation Mechanisms in Si Melt-C-SiC System (용융 Si-C-SiC계에서 $\beta$-SiC 생성기구)

  • 서기식;박상환;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.655-661
    • /
    • 1999
  • ${\beta}$-SiC formation mechanism in Si melt-C-SiC system with varying in size of carbon source was investigated. A continuous reaction sintering process using Si melt infiltration method was adopted to control the reaction sintering time effectively. It was found that ${\beta}$-SiC formation mechanism in Si melt-C-SiC system was directly affected by the size of carbon source. In the Si melt-C-SiC system with large carbon source ${\beta}$-SiC formation mechanism could be divided into two stages depending on the reaction sintering time: in early stage of reaction sintering carbon dissolution in Si melt and precipitation of ${\beta}$-SiC was occurred preferentially and then SIC nucleation and growth was controlled by diffusion of carbon throughy the ${\beta}$-SiC layer formed on graphite particle. Furthmore a dissolution rate of graphite particles in Si melt could be accelerated by the infiltration of Si melt through basal plane of graphite crystalline.

  • PDF