• Title/Summary/Keyword: form-finding analysis

Search Result 194, Processing Time 0.024 seconds

Static Type Assignment for SSA Form in CTOC

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • Although the Java bytecode has numerous advantages, it also has certain shortcomings such as its slow execution speed and difficulty of analysis. In order to overcome such disadvantages, a bytecode analysis and optimization must be performed. The control flow of the bytecode should be analyzed; next, information is required regarding where the variables are defined and used to conduct a dataflow analysis and optimization. There may be cases where variables with an identical name contain different values at different locations during execution, according to the value assigned to a given variable in each location. Therefore, in order to statically determine the value and type, the variables must be separated according to allocation. In order to achieve this, variables can be expressed using a static single assignment form. After transformation into a static single assignment form, the type information of each node expressed by each variable and expression must be configured to perform a static analysis and optimization. Based on the basic type information, this paper proposes a method for finding the related equivalent nodes, setting nodes with strong connection components, and efficiently assigning each node type.

An Analysis of Inverse Kinematics and Singular Configuration for Six Axes Robot with Wrist Offset (ICEIC'04)

  • Lee YoungDae;Cho KumBae
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.263-268
    • /
    • 2004
  • The inverse kinematics problem is to find a set of joint variable values that will place the end effector of a robot manipulator into a given pose. Pieper has shown that a sufficient condition for a manipulator to have a closed form solution is that three adjacent joint axes intersects, hence the six axes robot with spherical wrist allows closed form solution. But many industrial robots have a non-spherical wrist to provide a stronger wrist configuration so that they can handle heavy payloads. Also, the use of a non-spherical wrist can result in a cheap and simple wrist arrangement than when all three axes intersect at a common point. In these cases, closed form solutions cannot be found. Therefore numerical technique must be used to solve the inverse kinematics equations. This paper proposes a new algorithm that can be used for finding inverse kinematics solution of the six axes robot with non-spherical wrist. Computer simulations are provided to prove the usefulness of our method.

  • PDF

Approximate Solution for Finding the Buckling Strength of Orthotropic Rectangular Plates (직교이방성판의 좌굴강도를 구하기 위한 근사식의 개발)

  • J. H. Jung;S. J. Yoon;S. K. You
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.28-38
    • /
    • 2003
  • In this study, the analytical investigation of orthotropic rectangular plate is presented. The loaded edges are assumed to be simply supported and the unloaded edges could have elastically restrained boundary conditions including the extreme boundary condition such as simple, fixed, and free. Using the closed-form solutions, the buckling analyses of orthotropic plate with arbitrary boundary conditions are performed. Based on the data obtained by conducting numerical analysis, the simplified form of equation for finding the buckling coefficient of plate with elastically restrained boundary conditions at the unloaded edges is suggested as a function of aspect ratio, elastic restraint. and material properties of the plate. The results of buckling analyses by closed-form solution and simplified form of solution are compared for various orthotropic material properties. It is confirmed that the difference of results is less than 1.5%.

Analysis of Traditional Urban Morphology of Korean Contemporary City and Institutional Measures for Preservation

  • Choi, Min-Ah
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.47-59
    • /
    • 2014
  • In the present circumstance of exploring measures for sustainable development, finding and using planning elements of historical city is getting important as a urban planning tool. Thus this study aims to examine the characters of Korean traditional urban form through three periods, Josun, modern and contemporary eras. Three urban centers representing different characteristics were selected; historical center based on 14th century's traditional planning, modern period urban center, which is related with development of railway, and contemporary urban center of late 20th century. Analyse of urban tissue, composed with form and scale of street network, blocks and plots, shows that each urban center of Seoul has certain common attributes in terms of morphology in spite of the difference of formation and development period. However this historical urban forms are rarely applicated in the current urban planning, such as new-town planning or district unit plan. This shows the necessity of modification of urban regulation for preserving the identity of our city and pursuing sustainable development.

A Study on the Unit System of Hybrid System Using the Membrane and Tensegrity (막과 텐세그러티를 이용한 하이브리드 구조물의 단위 구조 제안)

  • Sur, Sam-Yeol;Ko, Kwang-Ung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.81-87
    • /
    • 2005
  • The Space structures may have large freedom in scale and form. And especially Hybrid structures are received much attention from the view points of their light weight and aesthetics. Hybrid systems are stable structures which are reticulated spatial structures composed of compressive straight members, struts and cables and Membranes. In this paper, The Hybrid Unit System are suggested using the Membrane and Cable elements based on the Tensegrity Unit system. Also, The Hybrid System of double-layered single curvature is presented. We analyze the force density method allowing form-finding for Tensegrity systems. And We analyze the shape analysis by the LARSH which is the program for nonlinear analysis.

  • PDF

An Analysis on the characteristic of recognition about Individual Housing according to the landscape in Donghae Seaside (동해연안 주택외관의 인지특성에 관한 연구)

  • Cho, Won-Seok;Kim, Heung-Ki;Kim, Yong-Ki;Joo, Jae-Woo;Kim, Jung-Hyun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.7 no.3
    • /
    • pp.27-35
    • /
    • 2005
  • This study is about finding out characteristic of recognition individual housing in seaside of Donghae. To accomplish this purpose, we survey the 150 houses related to the landscape. Thus the major analysis is to take basic data, such as image(modern, western, traditional, etc) about exterior form of housing corresponding to the landscape. The result summarized as follows First, the elements for the characteristic of recognition were exterior material finish, exterior color, roof type, roof material finish, window size, roof slope, area of wall vs roof. Second, the image of traditional housing was very insufficient to plan landscape of housing with design elements. This research suggests that landscape housing of future is to be environmental landscape design and the proper design is to be various considering not only user's preference but also control of landscape.

  • PDF

A Study on the Shape Analysis of Cable-Dome Structures (케이블-돔 복합구조의 형상해석에 관한 연구)

  • 권택진;한상을;최옥훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.93-100
    • /
    • 1998
  • The basic systems of spatial structures such as shells, membrane, cable-nets and tensegrity structure have been developed to create the large spaces without column. These structures may have large freedom in scale and form, and especially tensegrity structures are received much attention from the view points of their light weight and aesthetics. But There re some difficulties concerning structural stability, surface formation and construction method. One of the way to solve these problems reasonably is a combination of tensile members and rigid members. A structural system based on this concept is referred to as the "HTS ( Hybrid Tension Structure )". This is a type of flexible structural system which is unstable initially, because the cable material has little initial rigidity. As cable - dome hybrid structures is a type of HTS, the initial stress for the self- equilibrated system having stable state have to be introduced. To determine initial stress having stable state, the shape finding analysis is required before the stress - deformation analysis. In this paper, the primary objective is to derive the nonlinear finite element formula of cable and truss members considering geometric nonlinearity for shape finding of cable-dome, and to propose the method to decide the initial stress by the shape analysis of cable-dome hybrid structure with the self-equilibrated state.

  • PDF

A Study on Static Type Assignment for Static Single Assignment Form (정적 단일 배정 형태를 위한 정적 타입 배정에 관한 연구)

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.117-126
    • /
    • 2006
  • Although the Java bytecode has numerous advantages, there are also shortcomings such as slow execution speed and difficulty in analysis. In order to overcome such disadvantages, bytecode analysis and optimization must be performed. First control flow of the bytecode should be analyzed, after which information is required regarding where the variables are defined and used to conduct data flow analysis and optimization. There may be cases where variables with an identical name contain different values at a different location during the execution according to the value assigned to a variable in each location. Therefore, in order to statically determine the value and type, the variables must be separated according to allocation. In order to do so, the variables can be expressed using a static single assignment form. After the transformation into a static single assignment form, the type information of each node expressed by each variable and expression must be configured to perform static analysis and optimization. Based on the basic type information, this paper proposes a method for finding related equivalent nodes, setting the nodes with strongly connection components and efficiently assigning each node the type.

  • PDF

Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds

  • Valdes-Vazquez, Jesus G.;Garcia-Soto, Adrian D.;Hernandez-Martinez, Alejandro;Nava, Jose L.
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.533-548
    • /
    • 2020
  • Despite the current technologic developments, failures in existent tensile fabric structures (TFS) subjected to wind do happen. However, design pressure coefficients are only obtained for large projects. Moreover, studies on TFSs with realistic supporting frames, comparing static and dynamic analyses and discussing the design implications, are lacking. In this study, fluid-Structure analyses of a TFS supported by masts and inclined cables, by subjecting it to different wind speeds, are carried out, to gain more understanding in the above-referred aspects. Wind-induced stresses in the fabric and axial forces in masts and cables are assessed for a hypar by using computational fluid dynamics. Comparisons are carried out versus an equivalent static analysis and also versus loadings deemed representative for design. The procedure includes the so-called form-finding, a finite element formulation for the TFS and the fluid formulation. The selected structure is deemed realistic, since the supporting frame is included and the shape and geometry of the TFS are not uncommon. It is found that by carrying out an equivalent static analysis with the determined pressure coefficients, differences of up to 24% for stresses in the fabric, 5.4% for the compressive force in the masts and 21% for the tensile force in the cables are found with respect to results of the dynamic analysis. If wind loads commonly considered for design are used, significant differences are also found, specially for the reactions at the supporting frame. The results in this study can be used as an aid by designers and researchers.

GRADIENT PROJECTION METHODS FOR THE n-COUPLING PROBLEM

  • Kum, Sangho;Yun, Sangwoon
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1001-1016
    • /
    • 2019
  • We are concerned with optimization methods for the $L^2$-Wasserstein least squares problem of Gaussian measures (alternatively the n-coupling problem). Based on its equivalent form on the convex cone of positive definite matrices of fixed size and the strict convexity of the variance function, we are able to present an implementable (accelerated) gradient method for finding the unique minimizer. Its global convergence rate analysis is provided according to the derived upper bound of Lipschitz constants of the gradient function.