• Title/Summary/Keyword: form of vessel

Search Result 234, Processing Time 0.027 seconds

Efficient Propulsion of a Container Ship Using the Inclined Keel Concept ("Inclined Keel" 을 이용한 컨테이너선의 추진효율 향상)

  • Seo, Kwang-Cheol;Atlar, Mehmet;Kim, Hee-Jung;Chun, Ho-Hwan;Kang, Dae-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.379-388
    • /
    • 2007
  • Ever increasing fuel prices and environmental concerns are forcing commercial vessel operators and designers to re-assess current vessel designs with an emphasis on their propulsion systems. The most important parameter determining propulsive efficiency is the diameter of propeller. Many investigations have been carried out to adapt a large and slow turning propeller known as one of the most robust and effective way of achieving high efficiency in ship propulsion system. However, for the same vessel a further increase of propeller diameter would require the modification of the aft end while still paying attention to the hull clearance to prevent excessive propeller excited vibrations. In order to take the advantage of this approach small workboats (e.g. tug boats, fishing vessels etc.) operate in service with a significant increase of aft draught and hence resulting "inclined keel" configuration can be observed. Although it is not unusual to see large vessels sometimes to operate with stern trim to improve their operational performance and fuel efficiency, it is rare to see a such vessel purposely built with an inclined keel feature to fit a large diameter propeller for power saving. This paper investigates the application of the inclined keel configuration to a 3600TEU container vessel with the aim of fitting an 11 % larger diameter propeller (and hence resulting 17.5 % lower rpm) to gain further power saving over the similar size basis container ship with conventional "level keel" configuration.

Large Scale Gene Expression Analysis in Rat Models of 4-Vessel Occlusion Ischemia (4-Vessel Occlusion 허혈동물모델에서의 대규모 유전자 발현 연구)

  • Kang, Bong-Joo;Hong, Seong-Gil;Kim, Yun-Taik;Kim, Young-Ok;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.6 no.1
    • /
    • pp.89-98
    • /
    • 2000
  • Cerebral ischemia, the most prevalent form of clinical stroke, is a medical problem of the first magnitude. Substantial efforts are being made to develop drugs which will protect the brain from the neurodegeneration followed by an ischemic stroke. A key factor in this process is the development of animal models that mimic the neuropathological consequences of stroke. Recently, there is increasing an evidence that free radical is involved in the mechanisms of ischemic brain damage. We investigated the macro scale gene expression analysis on the global ischemia induced by 4-vessel occlusion in Wister rats. The recent availability of microarrays provides an attractive strategy for elaborating an unbiased molecular profile of large number of genes during ischemic injury. This experimental approach offers the potential to identify molecules or cellular pathways not previously associated with ischemia. Ischemia was induced by 4-vessel occlusion for 10 minutes and reperfused again. RNA from sham control brain and time-dependent ischemed brain were hybridized to microarrays containing 4,000 rat genes. 589 genes were found to be at least 2 fold regulated at one or more time points. These survey data provide the foundation studies that should provide convincing proof for ischemia and oxidative stress on gene expression.

  • PDF

An Experimental Study on Confined Steel Structure Blasting Demolition (폭약을 이용한 밀폐압력용기 해체에 관한 기초적 실험연구)

  • Lee, Ha-Young;Kim, Yong-Kyun;Yang, Kuk-Jung;Hur, Won-Ho;Kang, Dae-Woo
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.43-51
    • /
    • 2012
  • The Demolition blasting has been applied for buildings and structures so far. In this study, however, a confined vessel blasting filled with water has been focused. A small amount of explosives were placed in a sealed vessel with water, perfect elastic body, supposed as a relay agent in it, and the blasting aspect was observed. Blasting pressure was standardized by Abel's equation of state. In result, if there was a relay agent in it, the pressure vessel was torn apart with smaller power than its tensile strength. If there was not, it needed 7.1~8.5 times as much power as the previous one, and the blasting pressure had not also affected the demolition and it had gone or vanished until it reached a certain point, In terms of pressure vessel made by steel, the elastic-plastic failure was took a place, and the first yield point happened along the welded area as a form of heating plastic failure we thought.

Estimation of the Fatigue Damage for an Ice-going Vessel under Broken Ice Condition Part II - Simplified Approach (유빙 하중을 받는 내빙 선박의 피로손상도 추정 Part II - 간이 해석법)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.231-241
    • /
    • 2019
  • In this study, a simplified analysis method was developed to evaluate the fatigue damage of an ice-going ship under broken ice condition. The global ice load, which is essentially calculated at the design stage of the Arctic vessel, and the hull form information were used to estimate the local ice load acting on the outer-shell of the ship. The local ice load was applied to the finite element analysis model, and the Weibull parameters for the target fatigue point were derived. Finally, fatigue damage was evaluated by applying the S-N curve and the Palmgren-Miner rule. For the verification of the proposed method, numerical analyses using direct approach were performed for the same conditions. A numerical model that implements the interaction between ice and structure was introduced to verify the local ice load and the stress calculated from the proposed method. Finally, the fatigue analyses of the Baltic Sea for actual ice conditions were performed, and the results of the proposed method, the method using numerical analysis, and the LR method were compared.

An Experimental Study on the Optimization of Stern Appendix for New Generation Korean Fishing Vessels (차세대 한국형 어선의 저항성능 최적화를 위한 수조모형시험 연구)

  • Lee, Min Kyung;Kim, Su Jin;Yu, Jin-Won;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • Korean coastal fishery suffers from profitability degradation due to a decrease in fisheries resources, pollution in coastal waters, fuel coast increase, and market opening for aquaculture products. The next generation Korean fishing vessel aims at the improvement of energy efficiency, enhancement of crew welfare, and safety. These purposes can be accomplished by adopting a new standard hull form with improved resistance performance and a modernized residence facility on the deck. In order to improve resistance performance, this study attempts to optimize design variables for stern flaps for three kinds of fishing vessels - coastal multi-purpose, coastal trap, and dredged nets. A series of model tests for these fishing vessels was carried out in the towing tank of Pusan National University. The results indicate that for some cases, the stern flap caused the stern trim of the vessel to decrease, leading to the resistance reduction.

Study on the Manoeuvring Performance of a Fishing Vessel Based on CFD Simulation of the Hull Forms and Rudder Shapes

  • Hyeonsil Choi;Soo Yeon Kwon;Sang-Hyun Kim;In-Tae Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.129-136
    • /
    • 2023
  • To evaluate manoeuvring performance of merchant ships, the mathematical modeling group (MMG) or computational fluid dynamics (CFD) simulations are used. However, it is difficult to use the MMG to evaluate the manoeuvring performance of fishing vessels, thus research using CFD simulations is necessary. Also, since the course-changing and turning ability is crucial in fishing operations, a rudder design suitable for fishing vessels is necessary. This study designs a rudder using National Advisory Committee for Aeronautics (NACA) airfoil sections and evaluates its manoeuvring performance. A CFD model is used to evaluate the manoeuvring performance of the fishing vessel, and turning and zig-zag tests are conducted. The effectiveness of using CFD simulations based on Reynolds averaged Navier-Stokes equations to assess the manoeuvring performance of fishing vessels was validated. No significant difference was found in the manoeuvring performance for hull forms and rudder designs for course-changing ability. However, the original hull form showed superior turning performance. Among five rudders with varying aspect ratios and shapes, the rudder with 5.5% aspect ratio had the best turning performance. Regarding the rudder design for fishing vessels, NACA airfoil was employed, and a rudder aspect ratio of 5.5% based on the immersed hull side area is recommended.

Characteristics of Combustion Radical in CNG Direct Injection Vessel (CNG 직접분사식 연소기에서의 연소 라디칼 특성)

  • 최승환;조승완;이석영;정동수;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.58-65
    • /
    • 2004
  • A cylindrical constant volume combustion chamber was used to investigate the combustion characteristics of stratified methane-air mixture under several initial charge conditions in the author's previous reports. The results showed that the improvement of thermal efficiency and reduction of heat loss was realized simultaneously by using 2-stage injection method. This paper deals with the reason why the stratified combustion has showed better combustion rate through the measurement and analysis of chemiluminescence of C $H^{*}$ and $C_{2}$$^{*}$ radicals. An optic fiber bundle is used to measure the local emission of C $H^{*}$ and $C_{2}$$^{*}$ radicals to map the relationship between the excess air ratio and local radical intensity ratio in the combustion vessel at 5 mm apart form the geometric center. The results show that there exist a relationship between the intensity ratio and the air-fuel ratio. It is revealed that the improvement of combustion rate in a lean-stratified mixture is realized through the 2-stage injection method. method.

Development of an Automated Design System of a Large Pressure Vessel using the Steel, 34CrMo4 (강재(34CrMo4)를 사용한 대형 고압가스 용기의 설계 자동화 시스템 개발)

  • Kim, Ji-Hoon;Kim, Eui-Soo;Kim, Chul;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.21-29
    • /
    • 2003
  • This paper describes a research work on the development of computer-aided design system for deep drawing & ironing of a high pressure vessel. An approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, handbook, experimental results and empirical knowledge of field experts. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM software, DEFORM and ANSYS, to form a useful package. It is composed of five main modules, which are calculation of product thickness, input, production feasibility check, process planning, and autofrettage process modules and two submodules, which are folding check and process variable verification submodules. Programs for the system have been written in AutoLISP on the AutoCAD 2000 using personal computer. The developed system makes it possible to design and manufacture large high pressure vessel requiring D.D.I. process more efficiently.

Nonlinear Finite Element Analysis of Containment Vessel by Considering the Tension stiffening Effect

  • Lee, Hong-Pyo;Choun, Young-Sun;Seo, Jeong-Moon;Shin, Jae-Chul
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.512-527
    • /
    • 2004
  • This paper describes the finite element (FE) analysis results of a 1/4 scale model of a prestressed concrete containment vessel (PCCV) by considering the tension stiffening effect, which is a result of the bond effect between the concrete and the steel. The tension stiffening model is assumed to be an exponential form based on the relationship between the average stress and the average strain of the concrete. The objective of the present FE analysis is to evaluate the ultimate internal pressure capacity of the PCCV, as well as its failure mechanism, when the PCCV model is subjected to a monotonous internal pressure beyond is design pressure capacity. With the commercial code ABAQUS, the FE analysis used two concrete failure criteria: a 2-dimensional axi-symmetric model with modified Drucker-Prager failure criteria and a 3-dimensional model with a damaged plasticity mod디. The results of our FE analysis on the ultimate pressure capacity and failure modes of PCCV have a good agreement with the experimental data.

Effect of the Advancing High Speed Vessel on the Ocean Wave (항해중인 수중력 고속정이 해양에 미치는 영향)

  • 곽승현;김동진;박명규
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.3
    • /
    • pp.1-10
    • /
    • 1995
  • The effect of the submerged high speed vessel on the ocean wave is made clear in the point of hydrodynamics view. In connection to the design of high speed ship, the flow analysis is carried out to predict the pressure distribution for drag and lift. The purpose of the research is to help the preliminary design of the economic hull form advancing under the ocean wave by estimating the resistance performance and the wave behaviour. In the present study, more efficient numerical approaches are investigated for the viscous flow analysis around a submerged NACA0012 hydrofoil with the laminar and incompressible fluid. Through the numerical simulation, it is found that the new numerical method becomes more efficient primarily due to the fact that the wave elevation is reasonably developed.

  • PDF