• Title/Summary/Keyword: forest map

Search Result 773, Processing Time 0.019 seconds

Land Cover Object-oriented Base Classification Using Digital Aerial Photo Image (디지털항공사진영상을 이용한 객체기반 토지피복분류)

  • Lee, Hyun-Jik;Lu, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.105-113
    • /
    • 2011
  • Since existing thematic maps have been made with medium- to low-resolution satellite images, they have several shortcomings including low positional accuracy and low precision of presented thematic information. Digital aerial photo image taken recently can express panchromatic and color bands as well as NIR (Near Infrared) bands which can be used in interpreting forest areas. High resolution images are also available, so it would be possible to conduct precision land cover classification. In this context, this paper implemented object-based land cover classification by using digital aerial photos with 0.12m GSD (Ground Sample Distance) resolution and IKONOS satellite images with 1m GSD resolution, both of which were taken on the same area, and also executed qualitative analysis with ortho images and existing land cover maps to check the possibility of object-based land cover classification using digital aerial photos and to present usability of digital aerial photos. Also, the accuracy of such classification was analyzed by generating TTA(Training and Test Area) masks and also analyzed their accuracy through comparison of classified areas using screen digitizing. The result showed that it was possible to make a land cover map with digital aerial photos, which allows more detailed classification compared to satellite images.

Region of Interest (ROI) Selection of Land Cover Using SVM Cross Validation (SVM 교차검증을 활용한 토지피복 ROI 선정)

  • Jeong, Jong-Chul;Youn, Hyoung-Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.75-85
    • /
    • 2020
  • This study examines machine learning cross-validation to utilized create ROI for classification of land cover. The study area located in Sejong and one KOMPSAT-3A image was used in this analysis: procedure on October 28, 2019. We used four bands(Red, Green, Blue, Near infra-red) for learning cross validation process. In this study, we used K-fold method in cross validation and used SVM kernel type with cross validation result. In addition, we used 4 kernels of SVM(Linear, Polynomial, RBF, Sigmoid) for supervised classification land cover map using extracted ROI. During the cross validation process, 1,813 data extracted from 3,500 data, and the most of the building, road and grass class data were removed about 60% during cross validation process. Based on this, the supervised SVM linear technique showed the highest classification accuracy of 91.77% compared to other kernel methods. The grass' producer accuracy showed 79.43% and identified a large mis-classification in forests. Depending on the results of the study, extraction ROI using cross validation may be effective in forest, water and agriculture areas, but it is deemed necessary to improve the distinction of built-up, grass and bare-soil area.

Landslide Susceptibility Assessment Using TPI-Slope Combination (TPI와 경사도 조합을 이용한 산사태 위험도 평가)

  • Lee, Han Na;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.507-514
    • /
    • 2018
  • TSI (TPI-Slope Index) which is the combination of TPI (Topographic Position Index) and slope was newly proposed for landslide and applied to a landslide susceptibility model. To do this, we first compared the TPIs with various scale factors and found that TPI350 was the best fit for the study area. TPI350 was combined with slope to create TSI. TSI was evaluated using logistic regression. The evaluation showed that TSI can be used as a landslide factor. Then a logistic regression model was developed to assess the landslide susceptibility by adding other topographic factors, geological factors, and forestial factors. For this, landslide-related factors that can be extracted from DEM (Digital Elevation Model), soil map, and forest type map were collected. We checked these factors and excluded those that were highly correlated with other factors or not significant. After these processes, 8 factors of TSI, elevation, slope length, slope aspect, effective soil depth, tree age, tree density, and tree type were selected to be entered into the regression analysis as independent variables. Three models through three variable selection methods of forward selection, backward elimination, and enter method were built and evaluated. Selected variables in the three models were slightly different, but in common, effective soil depth, tree density, and TSI was most significant.

A Study on Human Thermal Comfort of Residential Development Districts in Summer Season (여름철 택지개발지역의 열쾌적성에 관한 연구)

  • Kong, Hak-Yang;Choi, Nakhoon;Park, Sungae;Lee, Jongchun;Park, Sookuk
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.219-228
    • /
    • 2018
  • This study measured the Physiological Equivalent Temperature (PET) of the hottest day time in a day, in order to verify the characteristics of human thermal comfort in case of heat wave during summer time in each region, by subdividing the urban areas in accordance with the climatic characteristics with the use of Local Climate Zone (LCZ) as a method of classifying the type of urban climate and the land cover map, targeting the Homaesil residential development district in Suwon. In the results of measurement, the forest and paddy field showed the moderate heat stress while the urban park showed the strong heat stress. Other developed areas showed the extreme heat stress. Such results show the possibility of institutional utilization for the improvement of human thermal comfort through the verification of climatic characteristics and differences in each type of urban areas, and the efficient placement of green infrastructure and the planning of land use to cope with the heat wave even in the planning stage for the establishment of urban planning.

A Study on Mitigation Plan of Urban Heat Island Phenomenon Using Landsat Time Series Imagery - Focusing on Cheongna International City - (시계열 Landsat 위성영상을 활용한 도시 열섬 현상 완화 방안에 관한 연구 - 청라 국제도시를 중심으로 -)

  • BAEK, Seon-Uk;KIM, Dong-Hyun;KIM, Hung-Soo;GU, Bon-Yup;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.1-16
    • /
    • 2022
  • Areas developed through land reclamation projects have huge economic advantages in terms of supplying lands that can be used for farmlands, urban areas and etc., however have relatively small areas of grasslands and densely located buildings compared to inland cities. Hence, an urban heat island is occurring in these areas due to this characteristic, and in particular, the urban heat island in Cheongna International City is getting serious. In this study, the urban heat island in Cheongna International City was evaluated and analyzed by classified into the three periods after the reclamation project: farmland(2001-2008), development(2009-2013) and artificial grassland(2014-2020). The land cover map and Landsat time-series imagery were utilized for measuring the differences of the land surface temperatures between the urbanized areas and the grassland/forest areas in Cheongna International City. The statistical results showed that the differences in the land surface temperature between these areas were calculated to be at most 0℃ during the period of farmland, at most 3.60℃ during the period of development, and at most 2.51℃ during the period of grassland. This study proved that the urban heat island phenomenon increased when the urbanized areas increased, and the urban heat island phenomenon decreased when the artificial grassland areas increased in Cheongna International City where the reclamation project was carried out. The statistical results derived through this research can be used as the reference data for identifying the urban heat island problem in urban planning and establishing the reduction plan.

Detecting high-resolution usage status of individual parcel of land using object detecting deep learning technique (객체 탐지 딥러닝 기법을 활용한 필지별 조사 방안 연구)

  • Jeon, Jeong-Bae
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • This study examined the feasibility of image-based surveys by detecting objects in facilities and agricultural land using the YOLO algorithm based on drone images and comparing them with the land category by law. As a result of detecting objects through the YOLO algorithm, buildings showed a performance of detecting objects corresponding to 96.3% of the buildings provided in the existing digital map. In addition, the YOLO algorithm developed in this study detected 136 additional buildings that were not located in the digital map. Plastic greenhouses detected a total of 297 objects, but the detection rate was low for some plastic greenhouses for fruit trees. Also, agricultural land had the lowest detection rate. This result is because agricultural land has a larger area and irregular shape than buildings, so the accuracy is lower than buildings due to the inconsistency of training data. Therefore, segmentation detection, rather than box-shaped detection, is likely to be more effective for agricultural fields. Comparing the detected objects with the land category by law, it was analyzed that some buildings exist in agricultural and forest areas where it is difficult to locate buildings. It seems that it is necessary to link with administrative information to understand that these buildings are used illegally. Therefore, at the current level, it is possible to objectively determine the existence of buildings in fields where it is difficult to locate buildings.

A Habitat Analysis of the Historical Breeding Sites of Oriental White Storks(Ciconia boyciana) in Gyeonggi and Chungcheong Provinces, Korea (GIS를 이용한 황새(Ciconia boyciana) 번식지의 환경특성 분석 - 1970년대의 경기도와 충청도 지역을 대상으로 -)

  • Kim, Su-Kyung;Kim, Nam-Shin;Cheong, Seokwan;Kim, Young-Hoon;Sung, Ha-Cheol;Park, Shi-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.125-137
    • /
    • 2008
  • This research aims to produce basic data for developing habitat suitability models on the breeding sites of Oriental White Storks(Ciconia boyciana) which will be reintroduced to the wild in the future. The habitat characteristics of ten historical nesting sites of the Oriental White Storks at Gyeonggi and Chungcheong provinces in South Korea were analyzed with 1970's land use maps and Landsat MSS. The range of altitude on nesting sites was 40~116.38m. The mean distance from nesting sites to rice fields, to 30m wider river, and to reservoirs was $54.8{\pm}84.48m$, $869.8{\pm}708.01m$, and $1721.2{\pm}906.05m$ respectively. Historical nesting sites were located close to human settlements, and the mean distance of nesting sites to human settlements was $144.1{\pm}182.97m$. The land types within 5km radius from ten historical nesting sites consisted of 53.7% forest, 28.3% rice fields, 16.7% grasslands, 0.8% water bodies, and 0.6% human settlements. The composition of four land types(forest, rice fields, grasslands, and human settlements) was significantly differed between 93 random points and 10 historical nesting sites.

  • PDF

Uncertainty of Agrometeorological Advisories Caused by the Spatiotemporally Averaged Climate References (시공간평균 기준기후에 기인한 농업기상특보의 불확실성)

  • Kim, Dae-jun;Kim, Jin-Hee;Kim, Soo-Ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.120-129
    • /
    • 2017
  • Agrometeorological advisories for farms and orchards are issued when daily weather exceeds a predefined range of the local reference climate, which is a long-term average of daily weather for the location. The reference climate at local scales is prepared by various simplification methods, resulting in uncertainty in the agrometeorological advisories. We restored daily weather data for the 1981-2010 period and analyzed the differences in prediction results of weather risk by comparing with the temporal and spatial simplified normal climate values. For this purpose, we selected the agricultural drought index (ADI) among various disaster related indices because ADI requires many kinds of weather data to calculate it. Ten rural counties within the Seomjin River Basin were selected for this study. The normal value of 'temporal simplification' was calculated by using the daily average value for 30 years (1981-2010). The normal value of 'spatial simplification' is the zonal average of the temporally simplified normal values falling within a standard watershed. For residual moisture index, temporal simplification normal values were overestimated, whereas spatial simplification normal values were underestimated in comparison with non-simplified normal values. The ADI's calculated from January to July 2017 showed a significant deviation in terms of the extent of drought depending on the normal values used. Through this study, we confirmed that the result of weather risk calculation using normal climatic values from 'simplified' methods can affect reliability of the agrometeorological advisories.

Land Suitability Assessment by Combining Classification Results by Climate and Soil Information Using the Most Limiting Characteristic Method in the Republic of Korea (기후 및 토양 정보에서 최대저해인자법을 이용한 재배적지 구분의 통합에 관한 연구)

  • Kim, Hojung;Shim, Kyomoon;Hyun, Byungkeun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.127-134
    • /
    • 2016
  • Land suitability assessment for apples and pears was conducted with soil and climate information in South Korea. In doing so, we intended to preserve land and increase the productivity by providing valuable information regarding where more suitable areas for apples or pears are located. We used soil classification driven by soil environmental information system developed by National Institute of Agricultural Science, RDA, and also used climate classification in digital agro-climate map database for which is made by National Institute of Horticultural and Herbal Science. We combined both soil and climate classification results using a most-limiting characteristic method. The combined results showed very similar patterns with the results by classification based on soil information. Such results seem to come from the fact that the classification results by soil relatively lower than those by climate information. The results by soil classification seem to be too downgraded and checking if the final classification ranges in soil are reasonably made is strongly required. Although the most limiting characteristic method had been used widely in land suitability assessment, adapting the method based on results by soil and climate can be influenced by one downgraded factor. Therefore, alternative ways should be carefully considered for increasing the accuracy.

Prediction of Land-Use Change based on Urban Growth Scenario in South Korea using CLUE-s Model (도시성장 시나리오와 CLUE-s 모형을 이용한 우리나라의 토지이용 변화 예측)

  • LEE, Yong-Gwan;CHO, Young-Hyun;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.75-88
    • /
    • 2016
  • In this study, we used the CLUE-s model to predict the future land-use change based on the urban growth scenario in South Korea. The land-use maps of six classes (water, urban, rice paddy, upland crop, forest, and grass) for the year 2008 were obtained from the Ministry of Environment (MOE), and the land-use data for 5-year intervals between 1980 and 2010 were obtained from the Water Resources Management Information System (WAMIS), South Korea. For predicting the future land-use change, the MOE environmental conservation value assessment map (ECVAM) was considered for identifying the development-restricted areas, and various driving factors as location characteristics were prepared for the model. The predicted results were verified by comparing them with the land-use statistics of urban areas in each province for the year 2008. The prediction error rates were 9.47% in Gyeonggi, 9.96% in Gangwon, 10.63% in Chungbuk, 7.53% in Chungnam, 9.48% in Jeonbuk, 6.92% in Jeonnam, 2.50% in Gyeongbuk, and 8.09% in Gyeongnam. The sources of error might come from the gaps between the development of political decisions in reality with spatio-temporal variation and the mathematical model for urban growth rate in CLUE-s model for future scenarios. Based on the land-use scenario in 2008, the land-use predictions for the year 2100 showed that the urban area increased by 28.24%, and the rice paddy, upland crop, and forest areas decreased by 8.27, 6.72, and 1.66%, respectively, in South Korea.