Journal of Korean Society for Geospatial Information Science
/
v.19
no.1
/
pp.105-113
/
2011
Since existing thematic maps have been made with medium- to low-resolution satellite images, they have several shortcomings including low positional accuracy and low precision of presented thematic information. Digital aerial photo image taken recently can express panchromatic and color bands as well as NIR (Near Infrared) bands which can be used in interpreting forest areas. High resolution images are also available, so it would be possible to conduct precision land cover classification. In this context, this paper implemented object-based land cover classification by using digital aerial photos with 0.12m GSD (Ground Sample Distance) resolution and IKONOS satellite images with 1m GSD resolution, both of which were taken on the same area, and also executed qualitative analysis with ortho images and existing land cover maps to check the possibility of object-based land cover classification using digital aerial photos and to present usability of digital aerial photos. Also, the accuracy of such classification was analyzed by generating TTA(Training and Test Area) masks and also analyzed their accuracy through comparison of classified areas using screen digitizing. The result showed that it was possible to make a land cover map with digital aerial photos, which allows more detailed classification compared to satellite images.
This study examines machine learning cross-validation to utilized create ROI for classification of land cover. The study area located in Sejong and one KOMPSAT-3A image was used in this analysis: procedure on October 28, 2019. We used four bands(Red, Green, Blue, Near infra-red) for learning cross validation process. In this study, we used K-fold method in cross validation and used SVM kernel type with cross validation result. In addition, we used 4 kernels of SVM(Linear, Polynomial, RBF, Sigmoid) for supervised classification land cover map using extracted ROI. During the cross validation process, 1,813 data extracted from 3,500 data, and the most of the building, road and grass class data were removed about 60% during cross validation process. Based on this, the supervised SVM linear technique showed the highest classification accuracy of 91.77% compared to other kernel methods. The grass' producer accuracy showed 79.43% and identified a large mis-classification in forests. Depending on the results of the study, extraction ROI using cross validation may be effective in forest, water and agriculture areas, but it is deemed necessary to improve the distinction of built-up, grass and bare-soil area.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.36
no.6
/
pp.507-514
/
2018
TSI (TPI-Slope Index) which is the combination of TPI (Topographic Position Index) and slope was newly proposed for landslide and applied to a landslide susceptibility model. To do this, we first compared the TPIs with various scale factors and found that TPI350 was the best fit for the study area. TPI350 was combined with slope to create TSI. TSI was evaluated using logistic regression. The evaluation showed that TSI can be used as a landslide factor. Then a logistic regression model was developed to assess the landslide susceptibility by adding other topographic factors, geological factors, and forestial factors. For this, landslide-related factors that can be extracted from DEM (Digital Elevation Model), soil map, and forest type map were collected. We checked these factors and excluded those that were highly correlated with other factors or not significant. After these processes, 8 factors of TSI, elevation, slope length, slope aspect, effective soil depth, tree age, tree density, and tree type were selected to be entered into the regression analysis as independent variables. Three models through three variable selection methods of forward selection, backward elimination, and enter method were built and evaluated. Selected variables in the three models were slightly different, but in common, effective soil depth, tree density, and TSI was most significant.
This study measured the Physiological Equivalent Temperature (PET) of the hottest day time in a day, in order to verify the characteristics of human thermal comfort in case of heat wave during summer time in each region, by subdividing the urban areas in accordance with the climatic characteristics with the use of Local Climate Zone (LCZ) as a method of classifying the type of urban climate and the land cover map, targeting the Homaesil residential development district in Suwon. In the results of measurement, the forest and paddy field showed the moderate heat stress while the urban park showed the strong heat stress. Other developed areas showed the extreme heat stress. Such results show the possibility of institutional utilization for the improvement of human thermal comfort through the verification of climatic characteristics and differences in each type of urban areas, and the efficient placement of green infrastructure and the planning of land use to cope with the heat wave even in the planning stage for the establishment of urban planning.
Journal of the Korean Association of Geographic Information Studies
/
v.25
no.3
/
pp.1-16
/
2022
Areas developed through land reclamation projects have huge economic advantages in terms of supplying lands that can be used for farmlands, urban areas and etc., however have relatively small areas of grasslands and densely located buildings compared to inland cities. Hence, an urban heat island is occurring in these areas due to this characteristic, and in particular, the urban heat island in Cheongna International City is getting serious. In this study, the urban heat island in Cheongna International City was evaluated and analyzed by classified into the three periods after the reclamation project: farmland(2001-2008), development(2009-2013) and artificial grassland(2014-2020). The land cover map and Landsat time-series imagery were utilized for measuring the differences of the land surface temperatures between the urbanized areas and the grassland/forest areas in Cheongna International City. The statistical results showed that the differences in the land surface temperature between these areas were calculated to be at most 0℃ during the period of farmland, at most 3.60℃ during the period of development, and at most 2.51℃ during the period of grassland. This study proved that the urban heat island phenomenon increased when the urbanized areas increased, and the urban heat island phenomenon decreased when the artificial grassland areas increased in Cheongna International City where the reclamation project was carried out. The statistical results derived through this research can be used as the reference data for identifying the urban heat island problem in urban planning and establishing the reduction plan.
This study examined the feasibility of image-based surveys by detecting objects in facilities and agricultural land using the YOLO algorithm based on drone images and comparing them with the land category by law. As a result of detecting objects through the YOLO algorithm, buildings showed a performance of detecting objects corresponding to 96.3% of the buildings provided in the existing digital map. In addition, the YOLO algorithm developed in this study detected 136 additional buildings that were not located in the digital map. Plastic greenhouses detected a total of 297 objects, but the detection rate was low for some plastic greenhouses for fruit trees. Also, agricultural land had the lowest detection rate. This result is because agricultural land has a larger area and irregular shape than buildings, so the accuracy is lower than buildings due to the inconsistency of training data. Therefore, segmentation detection, rather than box-shaped detection, is likely to be more effective for agricultural fields. Comparing the detected objects with the land category by law, it was analyzed that some buildings exist in agricultural and forest areas where it is difficult to locate buildings. It seems that it is necessary to link with administrative information to understand that these buildings are used illegally. Therefore, at the current level, it is possible to objectively determine the existence of buildings in fields where it is difficult to locate buildings.
Kim, Su-Kyung;Kim, Nam-Shin;Cheong, Seokwan;Kim, Young-Hoon;Sung, Ha-Cheol;Park, Shi-Ryong
Journal of the Korean Association of Geographic Information Studies
/
v.11
no.1
/
pp.125-137
/
2008
This research aims to produce basic data for developing habitat suitability models on the breeding sites of Oriental White Storks(Ciconia boyciana) which will be reintroduced to the wild in the future. The habitat characteristics of ten historical nesting sites of the Oriental White Storks at Gyeonggi and Chungcheong provinces in South Korea were analyzed with 1970's land use maps and Landsat MSS. The range of altitude on nesting sites was 40~116.38m. The mean distance from nesting sites to rice fields, to 30m wider river, and to reservoirs was $54.8{\pm}84.48m$, $869.8{\pm}708.01m$, and $1721.2{\pm}906.05m$ respectively. Historical nesting sites were located close to human settlements, and the mean distance of nesting sites to human settlements was $144.1{\pm}182.97m$. The land types within 5km radius from ten historical nesting sites consisted of 53.7% forest, 28.3% rice fields, 16.7% grasslands, 0.8% water bodies, and 0.6% human settlements. The composition of four land types(forest, rice fields, grasslands, and human settlements) was significantly differed between 93 random points and 10 historical nesting sites.
Korean Journal of Agricultural and Forest Meteorology
/
v.19
no.3
/
pp.120-129
/
2017
Agrometeorological advisories for farms and orchards are issued when daily weather exceeds a predefined range of the local reference climate, which is a long-term average of daily weather for the location. The reference climate at local scales is prepared by various simplification methods, resulting in uncertainty in the agrometeorological advisories. We restored daily weather data for the 1981-2010 period and analyzed the differences in prediction results of weather risk by comparing with the temporal and spatial simplified normal climate values. For this purpose, we selected the agricultural drought index (ADI) among various disaster related indices because ADI requires many kinds of weather data to calculate it. Ten rural counties within the Seomjin River Basin were selected for this study. The normal value of 'temporal simplification' was calculated by using the daily average value for 30 years (1981-2010). The normal value of 'spatial simplification' is the zonal average of the temporally simplified normal values falling within a standard watershed. For residual moisture index, temporal simplification normal values were overestimated, whereas spatial simplification normal values were underestimated in comparison with non-simplified normal values. The ADI's calculated from January to July 2017 showed a significant deviation in terms of the extent of drought depending on the normal values used. Through this study, we confirmed that the result of weather risk calculation using normal climatic values from 'simplified' methods can affect reliability of the agrometeorological advisories.
Korean Journal of Agricultural and Forest Meteorology
/
v.18
no.3
/
pp.127-134
/
2016
Land suitability assessment for apples and pears was conducted with soil and climate information in South Korea. In doing so, we intended to preserve land and increase the productivity by providing valuable information regarding where more suitable areas for apples or pears are located. We used soil classification driven by soil environmental information system developed by National Institute of Agricultural Science, RDA, and also used climate classification in digital agro-climate map database for which is made by National Institute of Horticultural and Herbal Science. We combined both soil and climate classification results using a most-limiting characteristic method. The combined results showed very similar patterns with the results by classification based on soil information. Such results seem to come from the fact that the classification results by soil relatively lower than those by climate information. The results by soil classification seem to be too downgraded and checking if the final classification ranges in soil are reasonably made is strongly required. Although the most limiting characteristic method had been used widely in land suitability assessment, adapting the method based on results by soil and climate can be influenced by one downgraded factor. Therefore, alternative ways should be carefully considered for increasing the accuracy.
Journal of the Korean Association of Geographic Information Studies
/
v.19
no.3
/
pp.75-88
/
2016
In this study, we used the CLUE-s model to predict the future land-use change based on the urban growth scenario in South Korea. The land-use maps of six classes (water, urban, rice paddy, upland crop, forest, and grass) for the year 2008 were obtained from the Ministry of Environment (MOE), and the land-use data for 5-year intervals between 1980 and 2010 were obtained from the Water Resources Management Information System (WAMIS), South Korea. For predicting the future land-use change, the MOE environmental conservation value assessment map (ECVAM) was considered for identifying the development-restricted areas, and various driving factors as location characteristics were prepared for the model. The predicted results were verified by comparing them with the land-use statistics of urban areas in each province for the year 2008. The prediction error rates were 9.47% in Gyeonggi, 9.96% in Gangwon, 10.63% in Chungbuk, 7.53% in Chungnam, 9.48% in Jeonbuk, 6.92% in Jeonnam, 2.50% in Gyeongbuk, and 8.09% in Gyeongnam. The sources of error might come from the gaps between the development of political decisions in reality with spatio-temporal variation and the mathematical model for urban growth rate in CLUE-s model for future scenarios. Based on the land-use scenario in 2008, the land-use predictions for the year 2100 showed that the urban area increased by 28.24%, and the rice paddy, upland crop, and forest areas decreased by 8.27, 6.72, and 1.66%, respectively, in South Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.