• Title/Summary/Keyword: forest cover

Search Result 670, Processing Time 0.026 seconds

Estimation of soil moisture based on Sentinel-1 SAR data: Assessment of soil moisture estimation in different vegetation condition (Sentinel-1 SAR 토양수분 산정 연구: 식생에 따른 토양수분 모의평가)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.81-91
    • /
    • 2021
  • Synthetic Apreture Radar (SAR) is attracting attentions with its possibility of producing high resolution data that can be used for soil moisture estimation. High resolution soil moisture data enables more specific observation of soil moisture than existing soil moisture products from other satellites. It can also be used for studies of wildfire, landslide, and flood. The SAR based soil moisture estimation should be conducted considering vegetation, which affects backscattering signals from the SAR sensor. In this study, a SAR based soil moisture estimation at regions covered with various vegetation types on the middle area of Korea (Cropland, Grassland, Forest) is conducted. The representative backscattering model, Water Cloud Model (WCM) is used for soil moisture estimation over vegetated areas. Radar Vegetation Index (RVI) and in-situ soil moisture data are used as input factors for the model. Total 6 study areas are selected for 3 vegetation types according to land cover classification with 2 sites per each vegetation type. Soil moisture evaluation result shows that the accuracy of each site stands out in the order of grassland, forest, and cropland. Forested area shows correlation coefficient value higher than 0.5 even with the most dense vegetation, while cropland shows correlation coefficient value lower than 0.3. The proper vegetation and soil moisture conditions for SAR based soil moisture estimation are suggested through the results of the study. Future study, which utilizes additional ancillary vegetation data (vegetation height, vegetation type) is thought to be necessary.

Predicting Concentrations of Soil Pollutants and Mapping Using Machine Learning Algorithms (기계학습을 통한 토양오염물질 농도 예측 및 분포 매핑)

  • Kang, Hyewon;Park, Sang Jin;Lee, Dong Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.4
    • /
    • pp.214-225
    • /
    • 2022
  • This study emphasized the soil of environmental impact assessment to devise measures to minimize the negative impact of project implementation on the environment. As a series of efforts for impact assessment procedures, a national inventory-based database was established for urban development projects, and three machine learning model performance evaluation as well as soil pollutant concentration distribution mapping were conducted. Here, nine soil pollutants were mapped to the metropolitan area of South Korea using the Random Forest model, which showed the best performance. The results of this study found that concentrations of Zn, F, and Cd were relatively concerned in Seoul, where urbanization is the most active. In addition, in the case of Hg and Cr6+, concentrations were detected below the standard, which was derived from a lack of pollutants such as industrial and industrial complexes that affect contents of heavy metals. A significant correlation between land cover and pollutants was inferred through the spatial distribution mapping of soil pollutants. Through this, it is expected that efficient soil management measures for minimizing soil pollution and planning decisions regarding the location of the project site can be established.

Composition, Ecology and Conservation of the Andong Serpentine Flora, South Korea (안동 사문암 지역의 식물상과 생태와 보전)

  • Park, Jeong Seok;Kim, Yun Ha;Nam, Hee Jung;Eom, Byeongcheol;Lee, Gyeong-Yeon;Kim, Jong Won
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.515-540
    • /
    • 2022
  • The ultramafic serpentine area, the small size of 3 km2, remains in Andong, South Korea. We researched the ecological flora and its structure through the 12 times field investigations from 2013 till 2018. A total of 527 taxa including the previously recorded species-list was analyzed. Among them, 331 taxa were filed up as a real flora of the serpentine area. On the vegetation land-cover map describing a characteristic aspect of species distribution, a matrix of the sparse forest by Pinus densiflora and the grassland patches were the main landscape. The study area was acknowledged as a home for the ethnobotanical species and grassland components, and clearly distinctive from the non-serpentine area. The original habitat was too deteriorated by introducing the non-site soils and exotic plants. Conclusionally a designation of a protected area and the long-term ecological monitoring were requested.

Estimation of Frost Occurrence using Multi-Input Deep Learning (다중 입력 딥러닝을 이용한 서리 발생 추정)

  • Yongseok Kim;Jina Hur;Eung-Sup Kim;Kyo-Moon Shim;Sera Jo;Min-Gu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • In this study, we built a model to estimate frost occurrence in South Korea using single-input deep learning and multi-input deep learning. Meteorological factors used as learning data included minimum temperature, wind speed, relative humidity, cloud cover, and precipitation. As a result of statistical analysis for each factor on days when frost occurred and days when frost did not occur, significant differences were found. When evaluating the frost occurrence models based on single-input deep learning and multi-input deep learning model, the model using both GRU and MLP was highest accuracy at 0.8774 on average. As a result, it was found that frost occurrence model adopting multi-input deep learning improved performance more than using MLP, LSTM, GRU respectively.

Regionalization of CN Parameters for Nakdong River Basin using SCE-UA Algorithm (SCE-UA 최적화기법에 의한 낙동강 유역의 CN값 도출)

  • Jeon, Ji-Hong;Choi, Dong Hyuk;Kim, Jung-Jin;Kim, Tae Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.245-255
    • /
    • 2009
  • CN values are changed by various surface condition, which is cover type or treatment, hydrologic condition, or percent impervious area, even the same combination of land use and hydrologic soil group. In this study, CN parameters were regionalized for Nakdong River Basin by Long-Term Hydrologic Impact Assessment (L-THIA) coupled with SCE-UA, which is one of the global optimization technique. Six watersheds were selected for calibration (optimization) and periodic validation and two watersheds for spatical validation as ungauged watershed within Nakdong River Basin. Nash-Sutcliffe (NS) values were 0.66~0.86 for calibration, 0.68~0.91 for validation, and 0.60 and 0.85 for ungauged watersheds, respectively. Urban area for the selected watersheds covered high impervious area with 85% for residential area and 92% for commercial/industrial/transportation area. Hydrologic characteristics for crop area was similar to row crop with contoured treatment and poor hydrologic condition. For the forested area, hydrologic characteristics could be clearly distinguished from the leaf types of plant. Deciduous, coniferous, and mixed forest showed low, moderate, and high runoff rates by representing wood with fair and poor hydrologic condition, and wood-grass combination with fair hydrologic condition, respectively. CN parameters from this study could be strongly recommended to be used to simulate runoff for ungauged watershed.

The Impact of Environmental Characteristics in the Geumho River Watershed on Stream Water Quality (금호강 유역의 환경특성이 하천수질에 미치는 영향)

  • Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.4
    • /
    • pp.85-98
    • /
    • 2003
  • There has recently been an increasing interest of the watershed management as a solution to a wide range of problems related water environment, therefore this study attempted to construct the environment information system to monitor the Geumho River watershed, and to evaluate the impacts of the watershed characteristics on stream water quality. A detailed GIS database to analyze the environmental characteristics at the subwatershed units, including 1:25,000 scale topographical maps, detailed soil maps, land use, 10m-resolution DEMs, roads, streams, vegetation index(NDVI) calculated from Landsat TM imagery, rainfall, and soil loss using RUSLE, is compiled for the study area. The set of variables representing watershed urbanization or industrialization, residential and commercial landuse, industrial landuse, and road area have significantly negative(-) relationship with water quality variables(BOD, COD, SS, T-N, T-P). On the other hand, watershed indicators related to natural environmental conditions, forest cover and vegetation index(NDVI) in each subwatershed were significantly positive(+) relationship with water quality. Three other variables, agricultural landuse, amount of fertilizer and pesticides, and potential soil loss, were not significant in explaining the correlations between watershed environment and stream water quality.

  • PDF

The suggestion for Biotope Types and Field Datasheet based on Habitat Ecological Characteristics by German Policy Analysis (독일 정책 분석을 통한 서식지 생태특성 기반 비오톱 유형 분류 및 조사표 제안)

  • Kim, Nam-Shin;Jung, Song-Hie;Lim, Chi-Hong;Choi, Chul-Hyun;Cha, Jin-Yeol
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.5
    • /
    • pp.99-112
    • /
    • 2020
  • This study aims to propose biotope field datasheet and biotope type classification based on habitat-based by analyzing the German biotope system. The German system began in 1976 and has established a habitat-based national biotope classification system. On the other hand, Korea institutionalized in 2018 to build a classification system based on land use and land cover, which is a classification system that does not fully reflect ecosystem in Korea. Germany operates 44 biotope classification systems and 40 biotope field datasheet. Korea uses a single biotope field datasheet regardless of the biotope type. This classification system may not reflect the characteristics of Korea's biotope ecological habitat. The biotope classification system of Korea was proposed by dividing it into five categories: mountain ecology, freshwater ecology, land ecology, coastal ecology, and development area to reflect ecosystem habitat. The biotope type was designed as a system of large-classification-middle-small classification and subdivided into medium-classification and subdivided in each biotope system. The major classifications were classified into 44 categories according to the mountainous biotope(11), freshwater biotope(8), terrestrial biotope (12), coastal biotope(6), and development biotope(7). Unlike Germany, Korea's biotope field datasheet was proposed in five ways according to the classification of major ecosystem types. The results of this study are expected to contribute to the policy suggestion and the utilization of ecosystem conservation because the biotope classification system is classified to reflect the characteristics of ecosystem habitats.

The Relationship among Land Use, Vegetation and Surface Temperature in Urban Areas -The Case of Deagu City- (도시지역 지표온도와 토지이용 및 식생상태와의 상관관계에 관한 연구 : 대구광역시의 경우)

  • Kim, Jae Ik;Yeo, Chang-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.21-30
    • /
    • 2005
  • The primary purpose of this paper is to prove a clear relationship among land use type, vegetation level and surface temperature. For this purpose, this paper presents series of spatial distribution maps of the three features obtained through the visual interpretation of digital images. The result of study tells us that the spatial distribution of the vegetation level is very similar with that of surface temperature. By analyzing the relationship between surface temperature and land use types, this study categorizes the eighteen urban land uses into 7-8 groups according to their average surface temperature. The Duncan test was conducted to categorize the land uses. The surface temperature of manufacturing related land use is the highest, semi-residential use is the next, non-residential land use is the next to the lowest, and the agricultural and forest land use is the lowest. This paper provides another strong evidence of the relationship by showing the regression result.

  • PDF

Runoff Characteristics of Nutrients from Agroforest Culture Field (산림농업지대에서 식물영양물질의 유출특성)

  • Kim, Eun-Hyeok;Cho, Jae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.331-336
    • /
    • 2014
  • Sediment and nutrient loading caused by the forest to conversion of agricultural lands have led to the deterioration in near water ecosystem. This study was carried out to examine the effects of agroforest culture field and open field culture field on water quality and runoff loading of nutrient. The runoff loading of Tot-N and Tot-P in agroforest culture field were similar to open field culture field. The runoff loading of total suspended solids (TSS) in agroforest culture field and open field culture field were $2,721kg{\pm}196/10a$ and $420{\pm}29kg/10a$ in 2011 and $696kg{\pm}59/10a$ and $463{\pm}36kg/10a$ in 2012, respectively. Our investigation showed that the runoff loading of TSS from agroforest culture field decreased when soil cover and soil stabilization increased. Therefore, protect facility of soil erosion for early alteration of agricultural lands are needed to minimize the soil erosion from agroforest culture field.

A Study on the Change Detection of Multi-temporal Data - A Case Study on the Urban Fringe in Daegu Metropolitan City - (대도시 주변지역의 토지이용변화 - 대구광역시를 중심으로 -)

  • 박인환;장갑수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The purpose of this article is to examine land use change in the fringe area of a metropolitan city through multi-temporal data analysis. Change detection has been regarded as one of the most important applications for utilization of remotely sensed imageries. Conventionally, two images were used for change detection, and Arithmetic calculators were generally used on the process. Meanwhile, multi-temporal change detection for a large number of images has been carried out. In this paper, a digital land-use map and three Landsat TM data were utilized for the multi-temporal change detection Each urban area map was extracted as a base map on the process of multi-temporal change detection. Each urban area map was converted to bit image by using boolean logic. Various urban change types could be obtained by stacking the urban area maps derived from the multi-temporal data using Geographic Information System(GIS). Urban change type map was created by using the process of piling up the bit images. Then the urban change type map was compared with each land cover map for the change detection. Dalseo-gu of Daegu city and Hwawon-eup of Dalsung-gun, the fringe area of Daegu Metropolitan city, were selected for the test area of this multi-temporal change detection method. The districts are adjacent to each other. Dalseo-gu has been developed for 30 yeais and so a large area of paddy land has been changed into a built-up area. Hwawon-eup, near by Dalseo-gu, has been influenced by the urbanization of Dalseo-gu. From 1972 to 1999, 3,507.9ha of agricultural area has been changed into other land uses, while 72.7ha of forest area has been altered. This agricultural area was designated as a 'Semi-agricultural area'by the National landuse Management Law. And it was easy for the preserved area to be changed into a built-up area once it would be included as urban area. Finally, the method of treatment and management of the preserved area needs to be changed to prevent the destruction of paddy land by urban sprawl on the urban fringe.