• Title/Summary/Keyword: forest cover

Search Result 670, Processing Time 0.026 seconds

Feature Extraction and Fusion for land-Cover Discrimination with Multi-Temporal SAR Data (다중 시기 SAR 자료를 이용한 토지 피복 구분을 위한 특징 추출과 융합)

  • Park No-Wook;Lee Hoonyol;Chi Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.145-162
    • /
    • 2005
  • To improve the accuracy of land-cover discrimination in SAB data classification, this paper presents a methodology that includes feature extraction and fusion steps with multi-temporal SAR data. Three features including average backscattering coefficient, temporal variability and coherence are extracted from multi-temporal SAR data by considering the temporal behaviors of backscattering characteristics of SAR sensors. Dempster-Shafer theory of evidence(D-S theory) and fuzzy logic are applied to effectively integrate those features. Especially, a feature-driven heuristic approach to mass function assignment in D-S theory is applied and various fuzzy combination operators are tested in fuzzy logic fusion. As experimental results on a multi-temporal Radarsat-1 data set, the features considered in this paper could provide complementary information and thus effectively discriminated water, paddy and urban areas. However, it was difficult to discriminate forest and dry fields. From an information fusion methodological point of view, the D-S theory and fuzzy combination operators except the fuzzy Max and Algebraic Sum operators showed similar land-cover accuracy statistics.

Effects of Speckle Filtering on Synthetic Aperture Radar (SAR) Imagery (레이더 영상자료의 Speckle 필터링 효과)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.155-168
    • /
    • 1996
  • Speckle noise has been a primary concern to many applications of synthetic aperture radar (SAR) imagery. In recent years, several satellites with radar imaging systems were launched and the use of SAR data are expected to be increased rapidly The objectives of this study are to provide introductory understanding on radar speckle filtering and to compare the effects of several filtering methods that are relatively unknown to user community. Two study sites were extracted from the RADARSAT SAR data obtained over the suburban areas near Seoul. The study sites include relatively homogeneous cover types, such as reservoir, parking lot, rice pad, and deciduous forest. Five filters (mean filter, median filter, sigma filter, local statistics filter, and autocorrelation filter) were applied to the SAR imagery and their effects were evaluated from the aspects of both image smoothing and edge preservation. In overall, the evaluation results indicate that the local statistics filter and autocorrelation filter, that are based on a speckle model, are more effective to suppress speckle within homogeneous cover type while maintaining the edge sharpness between cover types.

Developing a soil water index-based Priestley-Taylor algorithm for estimating evapotranspiration over East Asia and Australia

  • Hao, Yuefeng;Baik, Jongjin;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.153-153
    • /
    • 2019
  • Evapotranspiration (ET) is an important component of hydrological processes. Accurate estimates of ET variation are of vital importance for natural hazard adaptation and water resource management. This study first developed a soil water index (SWI)-based Priestley-Taylor algorithm (SWI-PT) based on the enhanced vegetation index (EVI), SWI, net radiation, and temperature. The algorithm was then compared with a modified satellite-based Priestley-Taylor ET model (MS-PT). After examining the performance of the two models at 10 flux tower sites in different land cover types over East Asia and Australia, the daily estimates from the SWI-PT model were closer to observations than those of the MS-PT model in each land cover type. The average correlation coefficient of the SWI-PT model was 0.81, compared with 0.66 in the original MS-PT model. The average value of the root mean square error decreased from $36.46W/m^2$ to $23.37W/m^2$ in the SWI-PT model, which used different variables of soil moisture and vegetation indices to capture soil evaporation and vegetative transpiration, respectively. By using the EVI and SWI, uncertainties involved in optimizing vegetation and water constraints were reduced. The estimated ET from the MS-PT model was most sensitive (to the normalized difference vegetation index (NDVI) in forests) to net radiation ($R_n$) in grassland and cropland. The estimated ET from the SWI-PT model was most sensitive to $R_n$, followed by SWI, air temperature ($T_a$), and the EVI in each land cover type. Overall, the results showed that the MS-PT model estimates of ET in forest and cropland were weak. By replacing the fraction of soil moisture ($f_{sm}$) with the SWI and the NDVI with the EVI, the newly developed SWI-PT model captured soil evaporation and vegetation transpiration more accurately than the MS-PT model.

  • PDF

Intra-event variability of bacterial composition in stormwater runoff from mixed land use and land cover catchment

  • Paule-Mercado, Ma. Cristina A.;Salim, Imran;Lee, Bum-Yeon;Lee, Chang-Hee;Jahng, Deokjin
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.29-38
    • /
    • 2019
  • Microbial community and composition in stormwater runoff from mixed land use land cover (LULC) catchment with ongoing land development was diverse across the hydrological stage due different environmental parameters (hydrometeorological and physicochemical) and source of runoff. However, limited studies have been made for bacterial composition in this catchment. Therefore, this study aims to: (1) quantify the concentration of fecal indicator bacteria (FIB), stormwater quality and bacterial composition and structure according to hydrological stage; and (2) determine their correlation to environmental parameters. The 454 pyrosequencing was used to determine the bacterial community and composition; while Pearson's correlation was used to determine the correlation among parameters-FIB, stormwater quality, bacterial composition and structure-to environmental parameters. Results demonstrated that the initial and peak runoff has the highest concentration of FIB, stormwater quality and bacterial composition and structure. Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were dominant bacteria identified in this catchment. Furthermore, the 20 most abundant genera were correlated with runoff duration, average rainfall intensity, runoff volume, runoff flow, temperature, pH, organic matter, nutrients, TSS and turbidity. An increase of FIB and stormwater quality concentration, diversity and richness of bacterial composition and structure in this study was possibly due to leakage from septic tanks, cesspools and latrines; feces of domestic and wild animals; and runoff from forest, destroyed septic system in land development site and urban LULC. Overall, this study will provide an evidence of hydrological stage impacts on the runoff microbiome environment and public health perspective.

A Study on the Estimation Method of Carbon Storage Using Environmental Spatial Information and InVEST Carbon Model: Focusing on Sejong Special Self-Governing City - Using Ecological and Natural Map, Environmental Conservation Value Assessment Map, and Urban Ecological Map - (환경공간정보와 InVEST Carbon 모형을 활용한 탄소저장량 추정 방법에 관한 연구: 세종시를 중심으로 - 생태·자연도, 국토환경성평가지도, 도시생태현황지도를 대상으로 -)

  • Hwang, Jin-Hoo;Jang, Rae-ik;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.5
    • /
    • pp.15-27
    • /
    • 2022
  • Climate change is considered a severe global problem closely related to carbon storage. However, recent urbanization and land-use changes reduce carbon stocks in terrestrial ecosystems. Recently, the role of protected areas has been emphasized as a countermeasure to the climate change, and protected areas allow the area to continue to serve as a carbon sink due to legal restrictions. This study attempted to expand the scope of these protected areas to an evaluation-based environmental spatial information theme map. In this study, the area of each grade was compared, and the distribution of land cover for each grade was analyzed using the Ecological and Nature Map, Environmental Conservation Value Assessment Map and Urban Ecological Map of Sejong Special Self-Governing City. Based on this, the average carbon storage for each grade was derived using the InVEST Carbon model. As a result of the analysis, the high-grade area of the environmental spatial information generally showed a wide area of the natural area represented by the forest area, and accordingly, the carbon storage amount was evaluated to be high. However, there are differences in the purpose of production, evaluation items, and evaluation methods between each environmental spatial information, there are differences in area, land cover, and carbon storage. Through this study, environmental spatial information based on the evaluation map can be used for land use management in the carbon aspect, and it is expected that a management plan for each grade suitable for the characteristics of each environmental spatial information is required.

Estimation of Urban Heat Island Potential Based on Land Cover Type in Busan Using Landsat-7 ETM+ and AWS Data (Landsat-7 ETM+ 영상과 AWS 자료를 이용한 부산의 토지피복에 따른 여름철 도시열섬포텐셜 산출)

  • Ahn, Ji-Suk;Hwang, Jae-Dong;Park, Myung-Hee;Suh, Young-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.65-77
    • /
    • 2012
  • This study examined changes in land cover for the past 25 years in Busan and subsequently evaluated heat island potential by using land surface temperature and observation temperature data. The results were as below. The urban area of Busan increased by more than 2.5 times for the past 25 years from 1975 to 2000. It was believed that an increase in the pavement area of city within such a short period of time was an unprecedented phenomenon unique to our country. It could be assumed that urban heat island would be worsened through this process. After analyzing the land temperature according to the land cover, it was shown that there were noticeable changes in the temperature of urban & built-up and mountain & forest areas. In particular, the temperature rose to $36{\sim}39^{\circ}C$ in industrial areas during the summer, whereas it went down to $22{\sim}24^{\circ}C$ in the urban areas at whose center there were mountains. It was found that heat island potential according to the level of land cover had various values depending on the conditions of land cover. Among the areas of urbanization, the industrial area's heat island potential is 6 to $8^{\circ}C$, and the residential and commercial area's is $0{\sim}5^{\circ}C$, so it has been found that there is high possibility to induce urban heat islands. Meanwhile, in the forest or agricultural area or the waterside, the heat island potential is $-6{\sim}-3^{\circ}C$. With this study result, it is possible to evaluate the effects of temperature increase according to the urban land use, and it can be used as foundational data to improve urban thermal environment and plan eco-friendly urban development.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.

Assessment of Hydrological Impact by Long-Term Land Cover Change using WMS HEC-1 Model in Gyeongan-cheon Watershed (WMS HEC-1 모형을 이용한 경안천 유역의 경년 수문변화 분석)

  • Lee, Jun-Woo;Kwon, Hyung-Joong;Shin, Sha-Chul;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.107-118
    • /
    • 2003
  • The purpose of this study is to assess the hydrological impact on a watershed from long-term land cover changes. Gyeongan-cheon watershed($558.2km^2$) was selected and WMS(watershed modeling system) HEC-1 model was adopted as an evaluation tool. To identify land cover changes, five Landsat images(1980/2/15, 1986/4/15, 1990/4/26, 1996/4/26, 2000/5/17) were selected and analyzed using maximum likelihood method. As a result, urban areas have increased by 5.6% and forest areas have decreased by 6.1% between 1980 and 2000. SCS curve number increased by 9.8. To determine model parameters and evaluate HEC-1 model, five storm events(1998/5/2, 1998/8/23, 1998/9/30, 1999/5/3, 2000/7/29) were used. The simulated stream flow agreed well with the observed one with relative errors ranging from 9% to 36%. For 254 mm daily rainfall of 30 years frequency, due to the increase of urban areas peak flow increased by $455m^3/sec$ and the time of peak flow reduced about four hours for 20 years land cover changes.

  • PDF

Land Cover Classification by Using Landsat Thematic Mapper Data in Pyeongtaeg City (Landsat TM 화상자료(畵像資料)를 이용한 평택시지역 지표피복분류(地表被覆分類))

  • Rim, Sang-Kyu;Hong, Suk-Young;Jung, Won-Kyo;Kim, Moo-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.342-349
    • /
    • 2001
  • This study was carried out to classify and evaluate the land cover map using Landsat TM data in Pyeongtaeg City. DGPS data, aerial photography, topographical map were used for selection the training sets and accuracy assessment. The overall accuracy and Kappa coefficient of the land cover classification map(using supervised classification with 13 classes) with Landsat TM data(16 June. 1997) were respectively, 86.8%, 85.4%, but the user's accuracy of urban/village and vinyl-house was below 60%, and the producer's accuracy of read and vinyl-house below 70%. Maybe it was caused the spectral reflectance characteristics, heterogeneity and small distribution area on the artificial things such as urban/village, vinyl_house and road, etc. And then, the agricultural land cover classification system using remote sensing data in Korea was to classify level I and II. Level I consisted of 5 classes such as agricultural land, forest land, water, barren land, urban and built-up land.

  • PDF

A Study on Forest Changes for A/R CDM in North Korea (A/R CDM을 위한 북한지역의 산림변화 연구)

  • Lee, Dong-Kun;Oh, Young-Chool;Kim, Jae-Uk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • A/R CDM(Afforestation/Reforestation Clean Development Mechanism) in Kyoto Mechanism means, either afforestation in the area used for other purposes more than 50 years or reforestation in the area used for other purposes on December 31st in 1989. South Korea has few sites due to the successful forestation in the past, but North Korea has not reforested the deforested lands since the mid-1970's. So these areas need to apply A/R CDM Project for restoration. The purposes of this study are to make a time series analysis in deforested areas and to estimate a feasibility of A/R CDM. To find the site satisfying A/R CDM business definition, land cover classification was applied using satellite images of the mid-1970's with good forestation, late 1980's including A/R CDM base year, and recent 2000's, and the chronological change was analyzed to categorize the possible sites. The North Korean topographical map of 1977 was used to verify land cover classification degree of 1970's, the land cover classification results made by the Ministry of Environment in 2000 were compared to verify the accuracy of 1980's results, and the land cover classification results in 2000's were verified by 2 site visits. The results of this study can be summarized as follows. The eligible A/R CDM sites are 605,156ha on the basis of the forestation change analysis in North Korea. Since the mid-1970's, 30.8% of the decreased forestation area of 1,966,306ha was classified into A/R CDM eligible sites. While other countries have the limited eligible sites, which has not been used for forestation since 1989 or which is being scattered, North Korea has large scale sites. Deforested sites are mainly around road and residential area, consequently give better accessibility for forestation than other countries. In conclusion, it is found that North Korea can provide efficient site for applying A/R COM Project to forestation restoring deforested land because of easy accessibility and existence of many possible sites due to artificial deforestation. Also, it is meaningful that the study suggests the application possibility of A/R COM Project to restore deforested land in North Korea and the related basic information through the chronological classification of the mid-1970's with good forestation, the late-1980's including A/R COM base year, and recent 2000's. It is expected that the study contributes to revitalization of A/R CDM Project and related research on North Korea forestation.