Korean Journal of Agricultural and Forest Meteorology
/
v.8
no.2
/
pp.86-96
/
2006
Ecoclimap-1, a new complete surface parameter global database at a 1-km resolution, was previously presented. It is intended to be used to initialize the soil-vegetation- atmosphere transfer schemes in meteorological and climate models. Surface parameters in the Ecoclimap-1 database are provided in the form of a per-class value by an ecoclimatic base map from a simple merging of land cover and climate maps. The principal objective of this ecoclimatic map is to consider intra-class variability of life cycle that the usual land cover map cannot describe. Although the ecoclimatic map considering land cover and climate is used, the intra-class variability was still too high inside some classes. In this study, a new strategy is defined; the idea is to use the information contained in S10 NDVI SPOT/VEGETATION profiles to split a land cover into more homogeneous sub-classes. This utilizes an intra-class unsupervised sub-clustering methodology instead of simple merging. This study was performed to provide a new ecolimatic map over Northeast Asia in the framework of Ecoclimap-2 global database construction for surface parameters. We used the University of Maryland's 1km Global Land Cover Database (UMD) and a climate map to determine the initial number of clusters for intra-class sub-clustering. An unsupervised classification process using six years of NDVI profiles allows the discrimination of different behavior for each land cover class. We checked the spatial coherence of the classes and, if necessary, carried out an aggregation step of the clusters having a similar NDVI time series profile. From the mapping system, 29 ecosystems resulted for the study area. In terms of climate-related studies, this new ecosystem map may be useful as a base map to construct an Ecoclimap-2 database and to improve the surface climatology quality in the climate model.
Sejeong Bae ;Bokyung Son ;Taejun Sung ;Yeonsu Lee ;Jungho Im ;Yoojin Kang
Korean Journal of Remote Sensing
/
v.39
no.5_3
/
pp.1009-1029
/
2023
Urban trees play a vital role in urban ecosystems,significantly reducing impervious surfaces and impacting carbon cycling within the city. Although previous research has demonstrated the efficacy of employing artificial intelligence in conjunction with airborne light detection and ranging (LiDAR) data to generate urban tree information, the availability and cost constraints associated with LiDAR data pose limitations. Consequently, this study employed freely accessible, high-resolution multispectral satellite imagery (i.e., Sentinel-2 data) to estimate fractional tree canopy cover (FTC) within the urban confines of Suwon, South Korea, employing machine learning techniques. This study leveraged a median composite image derived from a time series of Sentinel-2 images. In order to account for the diverse land cover found in urban areas, the model incorporated three types of input variables: average (mean) and standard deviation (std) values within a 30-meter grid from 10 m resolution of optical indices from Sentinel-2, and fractional coverage for distinct land cover classes within 30 m grids from the existing level 3 land cover map. Four schemes with different combinations of input variables were compared. Notably, when all three factors (i.e., mean, std, and fractional cover) were used to consider the variation of landcover in urban areas(Scheme 4, S4), the machine learning model exhibited improved performance compared to using only the mean of optical indices (Scheme 1). Of the various models proposed, the random forest (RF) model with S4 demonstrated the most remarkable performance, achieving R2 of 0.8196, and mean absolute error (MAE) of 0.0749, and a root mean squared error (RMSE) of 0.1022. The std variable exhibited the highest impact on model outputs within the heterogeneous land covers based on the variable importance analysis. This trained RF model with S4 was then applied to the entire Suwon region, consistently delivering robust results with an R2 of 0.8702, MAE of 0.0873, and RMSE of 0.1335. The FTC estimation method developed in this study is expected to offer advantages for application in various regions, providing fundamental data for a better understanding of carbon dynamics in urban ecosystems in the future.
Usually in South Korea, land cover type and topographic undulation are frequently changed even in a narrow area. However, most of researches using aerial LIDAR(LIght Detection And Ranging) data in abroad had been acquired in the study areas to be changed infrequently. This research was performed to explore reconstruction methodologies of 3D surface models considering the distribution of land cover type and topographic undulation. Composed of variously undulatory forests, rocky river beds and man-made land cover such as streets, trees, buildings, parking lots and so on, an area was selected for the research. First of all, the area was divided into three zones based on land cover type and topographic undulation using its aerial ortho-photo. Then, aerial LIDAR data was clipped by each zone and different 3D modeling processes were applied to each clipped data before integration of each models and reconstruction of overall model. These kinds of processes might be effectively applied to landscape management, forest inventory and digital map composition. Besides, they would be useful to resolve less- or over-extracted problems caused by simple rectangle zoning when an usual data processing of aerial LIDAR.
This paper analyzed relationships between various features from SAR data with multiple acquisition dates and mode (frequency, polarization and incidence angles), and land-cover classes. Two typical types of features were extracted by considering acquisition conditions of currently available SAR data. First, coherence, temporal variability and principal component transform-based features were extracted from multi-temporal and single mode SAR data. C-band ERS-1/2, ENVISAT ASAR and Radarsat-1, and L-band JERS-1 SAR data were used for those features and different characteristics of different SAR sensor data were discussed in terms of land-cover discrimination capability. Overall, tandem coherence showed the best discrimination capability among various features. Long-term coherence from C-band SAR data provided a useful information on the discrimination of urban areas from other classes. Paddy fields showed the highest temporal variability values in all SAR sensor data. Features from principal component transform contained particular information relevant to specific land-cover class. As features for multiple mode SAR data acquired at similar dates, polarization ratio and multi-channel variability were also considered. VH/VV polarization ratio was a useful feature for the discrimination of forest and dry fields in which the distributions of coherence and temporal variability were significantly overlapped. It would be expected that the case study results could be useful information on improvement of classification accuracy in land-cover classification with SAR data, provided that the main findings of this paper would be confirmed by extensive case studies based on multi-temporal SAR data with various modes and ground-based SAR experiments.
Measurements of net ecosystem exchange (NEE) of $CO_2$ based on the eddy covariance technique provide reasonable carbon balance estimates in response to local environmental conditions. In South Korea, the forest ecosystems cover approximately 64% of the total area, thereby strongly affecting regional carbon balances. Cultivated croplands that cover about 17% of the total area should also be considered when calculating the carbon balance of the country. In this study, our objectives were (a) to quantify the range and seasonal variation of NEE at forest ecosystems, including deciduous, coniferous, and mixed forests, and agricultural ecosystems, including rice paddies and a potato field, in South Korea and (b) to compare NEE at ten Fluxnet sites that have the same or similar ecosystems as found in South Korea. The results showed that the forest and agricultural ecosystems were carbon sinks. In Korea, NEE at the forest ecosystems varied between -31 and $-362gC/m^2/yr$, and NEE at the croplands ranged from -210 to $-248gC/m^2/growing$ season. At the deciduous forest, NEE reached low values in late spring, early summer, and early autumn, while at the coniferous forest, it reached low values in spring, early summer, and mid autumn. The young mixed forest was a much stronger carbon sink than the old-growth deciduous and coniferous forests. During each crop growing season, beet had the lowest NEE value within six crops, followed by wither wheat, maize, rice, potato, and soybean. These results will be useful for designing and applying management strategies for the reduction of $CO_2$ emissions.
Park, Dong-Hyeok;Yu, Ji Soo;Ahn, Jae-Hyun;Kim, Tae-Woong
Journal of Korea Water Resources Association
/
v.50
no.10
/
pp.653-660
/
2017
The SCS-CN (Soil Conservation Service-Curve Number) method has been practically applied for estimating the effective precipitation. The CN is used to be determined according to the land use condition based on the US standard. However, there are two distinctive differences between U.S. and Korean land use conditions: mountainous (forest) and rice paddy area that cover more than 70% of the Korean territory. The previous work proposed to use 79 for rice paddy area, regardless of the soil type. Because US SCS's goal was originally to increase crops, the SCS classification standard provides only for woods and there are no criteria to distinguish the wood and forest. To determine the CN for forest, alternatively the U.S. Forest Service criteria have been employed in practice considering hydrologic condition class. In this study, we investigated the change of the forest CN using the observed rainfall - runoff data within the target area. The results indicated that the CN for forest was suitable for HC=1, and the corresponding CNs were redetermined between 54 and 55.
This study investigated the effect of forest type changes in Daegu, the hottest city in Korea, on the land surface temperature (LST). The LST change by forest type was analyzed by 2scene of Landsat TM image from 1990 to 2007. The land cover types were classified into 4 types; forest areas, urban areas, cultivated areas and other areas, and water areas. The forest areas were further classified into the coniferous tree areas and the broadleaf tree areas. The result of the statistical analysis of the LST change according to the forest type showed that the LST increased when the forest was changed to the urban area. The LST increased by about $0.6^{\circ}C$ when a broadleaf tree area was changed to an urban area and about $0.2^{\circ}C$ when a coniferous tree area was changed to an urban area. This was the temperature change as the result of the simple type change for 17 years. The temperature change was larger when considering both cases of the forest type being retained and changed. The LST increased by $2.3^{\circ}C$ more when the broadleaf tree areas were changed to the urban areas than when broadleaf trees were maintained. The LST increased by $1.9^{\circ}C$ more when the coniferous tree areas were changed to the urban areas than when the coniferous tree areas were maintained. The LST increased by $0.4^{\circ}C$ more when the broadleaf tree areas were destroyed than when the coniferous tree areas were destroyed. The results confirmed that the protection of broadleaf trees in urban forests was more effective for mitigating climate change.
Bae, Kwan Ho;Kim, Jun Soo;Lee, Change Seok;Cho, Hyun Je;Lee, Ho Young;Cho, Yong Chan
Journal of Korean Society of Forest Science
/
v.103
no.1
/
pp.23-29
/
2014
Open- to closed canopy stage and it's ecological characteristics in vegetation succession are commonly described, but poorly understood in Korea. Vegetation development on structure, environment and understory abundance were studied for 16 yr in post-clearcut Pinus densiflora forests in the southern Gangwon-do province by applying space-for-time approach. We sampled 210 plots (10 for structure and 200 for understory) for four seral stages (1yr, 3yr, 10yr and 16yr). After clear-cut, mean stem density increased gradually to $5,714{\pm}645$ stems/ha after 16 years and mean basal area was also from $5.5{\pm}0.7m^2/ha$ after 10 years and doubled at $10.0{\pm}1.6m^2/ha$ in 16 years. Woody debris and bared soil on the forest floor peaked at 11--- after 10 years and at 10.3--- after 3 years, respectively. In understory mean cover declined with all growth form groups following succession, but in richness, forb specie increased with structural development during 16 years. Our study suggested that overstory development did not suppressed whole understory properties especially in richness, thus appeared to act as a filter selectively constraining the understory characteristics. However only long-term studies are essential for elucidating patterns and processes that cannot be inferred form short-term or space-for-time researches. Strong negative relationship between overstory and understory characteristics in conventional models surely reexamined.
Urban forests provide great ecosystem services to population in metropolitan areas even though they occupy little green space in a huge gray landscape. Unfortunately, urbanization inherently results in threatening the green infrastructure, and the recent urbanization trends drew great attention of scientists and policy makers on how to preserve or restore green infrastructure in metropolitan area. For this reason, mapping the spatial distribution of the green infrastructure is important in urban environments since the resulting map helps us identify hot green spots and set up long term plan on how to preserve or restore green infrastructure in urban environments. As a preliminary step for mapping green infrastructure utilizing multi-source remote sensing data in urban environments, the objective of this study is to map vegetation volume by fusing LiDAR and multispectral data in urban environments. Multispectral imageries are used to identify the two dimensional distribution of green infrastructure, while LiDAR data are utilized to characterize the vertical structure of the identified green structure. Vegetation volume was calculated over the metropolitan Chicago city area, and the vegetation volume was summarized over 16 NLCD classes. The experimental results indicated that vegetation volume varies greatly even in the same land cover class, and traditional land cover map based above ground biomass estimation approach may introduce bias in the estimation results.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.1943-1947
/
2007
The objective of this research was to find a direct and indirect method to estimate land surface temperature (LST) efficiently, using Landsat images and in-situ measurement. Agricultural fields including paddy fields have long been known to have multi-functions beneficial to the environment and ecology of the urban surrounding areas. Among these functions, the ambient temperature cooling (ATC) effect are widely acknowledged. However, quantitative and regional assessment of such effect has not had many investigations. Thermal remote sensing has been used over urban areas to assess ATC effect, to perform land cover classifications and as input for models of urban surface atmosphere exchange. Here, we review the use of thermal remote sensing in the study of paddy fields and urban climates, focusing primarily on the ATC effect. Landsat satellite images were used to determine the surface temperatures of different land cover types of a $441km^2$ study area in Cheongju, Korea. The results show that the ATC are a function of paddy area percentage in Landsat pixels. Pixels with higher paddy area percentage have more significant cooling effect.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.