• Title/Summary/Keyword: forest LAI

Search Result 65, Processing Time 0.018 seconds

High-Resolution Numerical Simulations with WRF/Noah-MP in Cheongmicheon Farmland in Korea During the 2014 Special Observation Period (2014년 특별관측 기간 동안 청미천 농경지에서의 WRF/Noah-MP 고해상도 수치모의)

  • Song, Jiae;Lee, Seung-Jae;Kang, Minseok;Moon, Minkyu;Lee, Jung-Hoon;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.384-398
    • /
    • 2015
  • In this paper, the high-resolution Weather Research and Forecasting/Noah-MultiParameterization (WRF/Noah-MP) modeling system is configured for the Cheongmicheon Farmland site in Korea (CFK), and its performance in land and atmospheric simulation is evaluated using the observed data at CFK during the 2014 special observation period (21 August-10 September). In order to explore the usefulness of turning on Noah-MP dynamic vegetation in midterm simulations of surface and atmospheric variables, two numerical experiments are conducted without dynamic vegetation and with dynamic vegetation (referred to as CTL and DVG experiments, respectively). The main results are as following. 1) CTL showed a tendency of overestimating daytime net shortwave radiation, thereby surface heat fluxes and Bowen ratio. The CTL experiment showed reasonable magnitudes and timing of air temperature at 2 m and 10 m; especially the small error in simulating minimum air temperature showed high potential for predicting frost and leaf wetness duration. The CTL experiment overestimated 10-m wind and precipitation, but the beginning and ending time of precipitation were well captured. 2) When the dynamic vegetation was turned on, the WRF/Noah-MP system showed more realistic values of leaf area index (LAI), net shortwave radiation, surface heat fluxes, Bowen ratio, air temperature, wind and precipitation. The DVG experiment, where LAI is a prognostic variable, produced larger LAI than CTL, and the larger LAI showed better agreement with the observed. The simulated Bowen ratio got closer to the observed ratio, indicating reasonable surface energy partition. The DVG experiment showed patterns similar to CTL, with differences for maximum air temperature. Both experiments showed faster rising of 10-m air temperature during the morning growth hours, presumably due to the rapid growth of daytime mixed layers in the Yonsei University (YSU) boundary layer scheme. The DVG experiment decreased errors in simulating 10-m wind and precipitation. 3) As horizontal resolution increases, the models did not show practical improvement in simulation performance for surface fluxes, air temperature, wind and precipitation, and required three-dimensional observation for more agricultural land spots as well as consistency in model topography and land cover data.

$CO_2$ and Water Vapor Flux Measurement by Eddy Covariance Method in a Paddy Field in Korea (한반도 논에서의 에디공분산 방법에 의한 $CO_2$와 수증기 플럭스 관측)

  • Lee Jeongtaek;Lee Yangsoo;Kim Gunyeob;Shim Kyomoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2005
  • This study was conducted to measure and understand the exchange of CO₂ and water in a rice canopy. Eddy covariance system was installed on a 10m tower along with other meteorological instruments. CO₂ flux and surface energy balance were measured throughout the whole growing season in 2003 over a typical paddy field in Icheon, Korea. During the early growth stage in May and June, most of net radiation was partitioned to latent heat flux with daytime Bowen ratio of 0.3 to 0.7. Evapotranspiration (i.e., daily integrated latent heat flux) typically ranged from 3 to 4 mm d/sup -1/, with even higher rates on sunny days. Daily integrated net ecosystem exchange (NEE) of CO₂ increased with increasing solar radiation and leaf area index (LAI). The NEE was especially high during the stages of young panicle formation and heading. On 1 June 2003, when the rice field was flooded, it was a weak sink of atmospheric CO₂ with an uptake rate of 9.1 gm/sup -2/d/sup -1/. Despite frequent rainy and cloudy conditions in summer, maximum NEE of 36.2 gm/sup -2/d/sup -1/ occurred on 31 July prior to heading stage. As rice crop senesced after early September, the NEE decreased.

Use of Information Technologies to Explore Correlations between Climatic Factors and Spontaneous Intracerebral Hemorrhage in Different Age Groups

  • Ting, Hsien-Wei;Chan, Chien-Lung;Pan, Ren-Hao;Lai, Robert K.;Chien, Ting-Ying
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.142-151
    • /
    • 2017
  • Spontaneous intracerebral hemorrhage (sICH) has a high mortality rate. Research has demonstrated that sICH occurrence is related to weather conditions; therefore, this study used the decision tree method to explore the impact of climatic risk factors on sICH at different ages. The Taiwan National Health Insurance Research Database (NHIRD) and other open-access data were used in this study. The inclusion criterion was a first-attack sICH. The decision tree algorithm and random forest were implemented in R programming language. We defined a high risk of sICH as more than the average number of cases daily, and the younger, middle-aged and older groups were calculated as having 0.77, 2.26 and 2.60 cases per day, respectively. In total, 22,684 sICH cases were included in this study; 3,102 patients were younger (<44 years, younger group), 9,089 were middle-aged (45-64 years, middle group), and 10,457 were older (>65 years, older group). The risk of sICH in the younger group was not correlated with temperature, wind speed or humidity. The middle group had two decision nodes: a higher risk if the maximum temperature was >$19^{\circ}C$ (probability = 63.7%), and if the maximum temperature was <$19^{\circ}C$ in addition to a wind speed <2.788 (m/s) (probability = 60.9%). The older group had a higher risk if the average temperature was >$23.933^{\circ}C$ (probability = 60.7%). This study demonstrated that the sICH incidence in the younger patients was not significantly correlated with weather factors; that in the middle-aged sICH patients was highly-correlated with the apparent temperature; and that in the older sICH patients was highly-correlated with the mean ambient temperature. "Warm" cold ambient temperatures resulted in a higher risk of sICH, especially in the older patients.

Retrieval of the Fraction of Photosynthetically Active Radiation (FPAR) using SPOT/VEGETATION over Korea (SPOT/VEGETATION 자료를 이용한 한반도의 광합성유효복사율(FPAR)의 산출)

  • Pi, Kyoung-Jin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.537-547
    • /
    • 2010
  • The importance of vegetation in studies of global climate and biogeochemical cycles is well recognized. Especially. the FPAR (fraction of photosynthetically active radiation) is one of the important parameters in ecosystem productivity and carbon budget models. Therefore, accurate estimates of vegetation parameters are increasingly important in environmental impact assessment studies. In this study, optical FPAR using the Terra MODIS (MODerate resolution Imaging Spectroradiometer), SPOT VEGETATION and ECOCLIMAP data reproduced on the Korean peninsula. We applied the empirical method which is usually estimated as a linear or nonlinear function of vegetation indices. As results, we estimated the accurate expression which is 0.9039 of $R^2$ in cropland and 0.7901 of $R^2$ in forest. Finally, this study could be demonstrated to calibrate that produced FPAR while the overall pattern and random noise through the comparative analysis of FPAR on the reference data. Optimal use of input parameter on the Korean peninsula should be helping the accuracy of output as well as the improved quality of research.

Spatial Interpolation and Assimilation Methods for Satellite and Ground Meteorological Data in Vietnam

  • Do, Khac Phong;Nguyen, Ba Tung;Nguyen, Xuan Thanh;Bui, Quang Hung;Tran, Nguyen Le;Nguyen, Thi Nhat Thanh;Vuong, Van Quynh;Nguyen, Huy Lai;Le, Thanh Ha
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.556-572
    • /
    • 2015
  • This paper presents the applications of spatial interpolation and assimilation methods for satellite and ground meteorological data, including temperature, relative humidity, and precipitation in regions of Vietnam. In this work, Universal Kriging is used for spatially interpolating ground data and its interpolated results are assimilated with corresponding satellite data to anticipate better gridded data. The input meteorological data was collected from 98 ground weather stations located all over Vietnam; whereas, the satellite data consists of the MODIS Atmospheric Profiles product (MOD07), the ASTER Global Digital Elevation Map (ASTER DEM), and the Tropical Rainfall Measuring Mission (TRMM) in six years. The outputs are gridded fields of temperature, relative humidity, and precipitation. The empirical results were evaluated by using the Root mean square error (RMSE) and the mean percent error (MPE), which illustrate that Universal Kriging interpolation obtains higher accuracy than other forms of Kriging; whereas, the assimilation for precipitation gradually reduces RMSE and significantly MPE. It also reveals that the accuracy of temperature and humidity when employing assimilation that is not significantly improved because of low MODIS retrieval due to cloud contamination.

Estimation of Net Biome Production in a Barley-Rice Double Cropping Paddy Field of Gimje, Korea (김제 보리-벼 이모작지에서의 순 생물상생산량의 추정)

  • Shim, Kyo-Moon;Min, Sung-Hyun;Kim, Yong-Seok;Jung, Myung-Pyo;Choi, In-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.173-181
    • /
    • 2015
  • Fluxes of carbon dioxide ($CO_2$) were measured above crop canopy using the Eddy Covariance (EC) method, and emission rate of methane ($CH_4$) was measured using Automatic Open/Close Chamber (AOCC) method during the 2012-2013 barley and rice growing season in a barley-rice double cropping field of Gimje, Korea. The net ecosystem exchange (NEE) of $CO_2$ in the paddy field was analyzed to be affected by crop growth (biomass, LAI, etc.) and environment (air temperature, solar radiation, etc.) factors. On the other hand, the emission rate of $CH_4$ was estimated to be affected by water management (soil condition). NEE of $CO_2$ in barley, rice and fallow period was -100.2, -374.1 and $+41.2g\;C\;m^{-2}$, respectively, and $CH_4$ emission in barley and rice period was 0.2 and $17.3g\;C\;m^{-2}$, respectively. When considering only $CO_2$, the barley-rice double cropping ecosystem was estimated as a carbon sink ($-433.0g\;C\;m^{-2}$). However, after considering the harvested crop biomass ($+600.3g\;C\;m^{-2}$) and $CH_4$ emission ($+17.5g\;C\;m^{-2}$), it turned into a carbon source ($+184.7g\;C\;m^{-2}$).

Monitoring of Rice Growth by RADARSAT and Landsat TM data (RADARSAT과 Landsat TM자료를 이용한 벼 생육모니터링)

  • Hong Suk-Young;Rim Sang-Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.1
    • /
    • pp.9-15
    • /
    • 2000
  • The objective of this study is to evaluate the use of RADARSAT and Landsat TM data for the monitoring of rice growth. The relationships between backscatter coefficients($\sigma$$^{0}$ ) of RADARSAT data and digital numbers (DN) of Landsat TM and rice growth parameters were investigated. Radar backscatter coefficients were calculated by calibration process and then compared with rice growth parameters; plant height, leaf area index (LAI), and fresh and dry biomass. When radar backscatter coefficient ($\sigma$$^{0}$ ) of rice was expressed as a function of time, it is shown that the increasing trend ranged from -22--20dB to -9--8dB as growth advances. The temporal variation of backscatter coefficient was significant to interpret rice growth. According to the relationship between leaf area index and backscatter coefficient, backscatter coefficient underestimated leaf area index at the beginning of life history and overestimated, at the reproductive stage. The same increasing trend between biomass and backscatter coefficient was shown. From these results, RADARSAT data appear positive to the monitoring of rice growth. Each band of time-series Landsat TM data had a significant trend as a rice crop grows during its life cycle. Spectral indices, NDVI[(TM4-TM3)/(TM4+TM3)] and RVI(TM4/TM2), derived from Landsat TM equivalent bands had the same trend as leaf area index.

  • PDF

Seasonal Variation of Carbon Dioxide and Energy Fluxes During the Rice Cropping Season at Rice-barley Double Cropping Paddy Field of Gimje (김제 벼-보리 이모작 논에서 벼 재배기간동안의 CO2 및 에너지 플럭스의 계절적 변화)

  • Min, Sung-Hyun;Shim, Kyo-Moon;Kim, Yong-Seok;Jung, Myung-Pyo;Kim, Seok-Cheal;So, Kyu-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.273-281
    • /
    • 2013
  • Based on the results of continuous flux measurements at the Gimje paddy flux site in the southwestern coast of Korea, carbon dioxide and energy exchanges between customarily cultivated rice-barley double cropping paddy field and the atmosphere during the 2012 rice growing season (from $9^{th}$ Jun. 2012 through $20^{th}$ Oct. 2012) were analyzed. Carbon dioxide and energy (H, LE) fluxes were estimated by the eddy covariance method. Environmental parameters (net radiation, precipitation, etc.) and plant biomass (LAI, plant height, etc.) were measured along with fluxes. After the quality control and gap-filling, the observed fluxes were analyzed. The results have been showed that net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (Re) during the rice cropping period were -277.1, 710.3, and 433.2 g C $m^{-2}$, respectively.

BVOCs Estimates Using MEGAN in South Korea: A Case Study of June in 2012 (MEGAN을 이용한 국내 BVOCs 배출량 산정: 2012년 6월 사례 연구)

  • Kim, Kyeongsu;Lee, Seung-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.1
    • /
    • pp.48-61
    • /
    • 2022
  • South Korea is quite vegetation rich country which has 63% forests and 16% cropland area. Massive NOx emissions from megacities, therefore, are easily combined with BVOCs emitted from the forest and cropland area, then produce high ozone concentration. BVOCs emissions have been estimated using well-known emission models, such as BEIS (Biogenic Emission Inventory System) or MEGAN (Model of Emission of Gases and Aerosol from Nature) which were developed using non-Korean emission factors. In this study, we ran MEGAN v2.1 model to estimate BVO Cs emissions in Korea. The MO DIS Land Cover and LAI (Leaf Area Index) products over Korea were used to run the MEGAN model for June 2012. Isoprene and Monoterpenes emissions from the model were inter-compared against the enclosure chamber measurements from Taehwa research forest in Korea, during June 11 and 12, 2012. For estimating emission from the enclosed chamber measurement data. The initial results show that isoprene emissions from the MEGAN model were up to 6.4 times higher than those from the enclosure chamber measurement. Monoterpenes from enclosure chamber measurement were up to 5.6 times higher than MEGAN emission. The differences between two datasets, however, were much smaller during the time of high emissions. More inter-comparison results and the possibilities of improving the MEGAN modeling performance using local measurement data over Korea will be presented and discussed.

A study on the ecological habitat and protection of natural Sorbus commixta forest at Mt. Seorak (설악산(雪嶽山)에 분포(分布)하는 마가목 천연림(天然林)의 생태환경(生態環境)과 보호(保護)에 관(關)한 연구(硏究))

  • Shin, Jai Man;Kim, Tong Su;Han, Sang Sup
    • Journal of Forest and Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1983
  • The purpose of this study was to elucidate the ecophysiological habitat of natural Sorbus commixta forest at Mt. Seorak. The results obtained were as follows: 1. The Sorbus commixta trees mainly distributed from 900m to 1,500m altitude. In there, the warm index(WI) was about 42$3.2{\times}10^3$ to $9.2{\times}10^3$, cation exchange capacity(CEC) was 13.7 to 19.5mg/100g, N content 0.21 to 0.39%, $P_2O_5$ content was 22.6 to 38.7ppm, and pH value was 5.6 to 5.8 respectively. 4. The upper crown trees in Sorbus commixta communities were Abies nephrolepis, Taxus cuspidata, Betula platyphylla var. japonica, Quercus${\times}$grosseserrata, Acer mono, Prunus sargentii, Carpinus cordata, Tilia amurensis, and the under crown trees were Rhododendron brachycarpum, Acer pseudo-sieboldianum, Thuja olientalis, Corylus heterohpylla, Philadelphus schrenckii, Rhododendron schlippenbachii, Rhododendron mucronulatum, and Magnolia sieboldii. 5. The stand densities were 1,156 trees/ha at 1,160m and 3,600 trees/ha at 1,300m respectively. The coverages by the DBH basal area were 0.37 at 1,160m and 0.31 at 1,300m respectively, and the vegetation coverages by the crown projection area were 2.04 at 1,160m and 1.61 at 1,300m respectively. 6. The light extinction coefficient(k) in Beer-Lambert's law, showed the distance, F(z), from top canopy to aboveground, was 0.17. 7. The water relations parameters of Sorbus commixta shoot were obtained by the pressure chamber technique. The osmotic pressure, ${\pi}_o$, at maximum turgor was -16.2 bar, and VAT pressure was 14.5bar. The osmotic pressure, ${\pi}_p$, at incipient plasmolysis was -19.4bar. The relative water contents at incipient plasmolysis were 83.1% ($v_p/v_o$) and 87.1%($v_p/w_s$;$w_s$, total water at maximum turgor). 8. The bulk modulus of elasticity(E) of shoot was about 69.6. The total symplasmic water to total water in shoot was 67.7%, and the apoplastic water to total water was 32.3%.

  • PDF