• Title/Summary/Keyword: foreground detection

Search Result 118, Processing Time 0.024 seconds

Effective Automatic Foreground Motion Detection Using the Statistic Information of Background

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.121-128
    • /
    • 2015
  • In this paper, we proposed and implemented the effective automatic foreground motion detection algorithm that detect the foreground motion by analyzing the digital video data that captured by the network camera. We classified the background as moving background, fixed background and normal background based on the standard deviation of background and used it to detect the foreground motion. According to the result of experiment, our algorithm decreased the fault detection of the moving background and increased the accuracy of the foreground motion detection. Also it could extract foreground more exactly by using the statistic information of background in the phase of our foreground extraction.

A Fast and Precise Blob Detection

  • Nguyen, Thanh Binh;Chung, Sun-Tae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.23-29
    • /
    • 2009
  • Blob detection is an essential ingredient process in some computer applications such as intelligent visual surveillance. However, previous blob detection algorithms are still computationally heavy so that supporting real-time multi-channel intelligent visual surveillance in a workstation or even one-channel real-time visual surveillance in a embedded system using them turns out prohibitively difficult. In this paper, we propose a fast and precise blob detection algorithm for visual surveillance. Blob detection in visual surveillance goes through several processing steps: foreground mask extraction, foreground mask correction, and connected component labeling. Foreground mask correction necessary for a precise detection is usually accomplished using morphological operations like opening and closing. Morphological operations are computationally expensive and moreover, they are difficult to run in parallel with connected component labeling routine since they need much different processing from what connected component labeling does. In this paper, we first develop a fast and precise foreground mask correction method utilizing on neighbor pixel checking which is also employed in connected component labeling so that the developed foreground mask correction method can be incorporated into connected component labeling routine. Through experiments, it is verified that our proposed blob detection algorithm based on the foreground mask correction method developed in this paper shows better processing speed and more precise blob detection.

  • PDF

Foreground object detection in projection display (프로젝션 화면에서 전경물체 검출)

  • Kang Hyun;Lee Chang Woo;Park Min Ho;Jung Keechul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.27-37
    • /
    • 2004
  • The detection of foreground objects in a projection display using color information can be hard due to changing lighting conditions and complex backgrounds. Accordingly, the current paper proposes a foreground object detection method using color information that is obtained from the input image to the Projector and an image captured by a camera above the projection display. After pixel correspondences between the two images are found by calibrating the geometry distortion and color distortion, the natural color variations are estimated for the projection display. Then, any pixel that has another variation not resulting from natural geometry or color distortion is considered a part of foreground objects, because a foreground object in a projection display changes the values of pixels. As shown by experimental results, the proposed foreground detection method is applicable to an interactive projection display system such as the DigitalDesk

Background Prior-based Salient Object Detection via Adaptive Figure-Ground Classification

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng;Lu, Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1264-1286
    • /
    • 2018
  • In this paper, a novel background prior-based salient object detection framework is proposed to deal with images those are more complicated. We take the superpixels located in four borders into consideration and exploit a mechanism based on image boundary information to remove the foreground noises, which are used to form the background prior. Afterward, an initial foreground prior is obtained by selecting superpixels that are the most dissimilar to the background prior. To determine the regions of foreground and background based on the prior of them, a threshold is needed in this process. According to a fixed threshold, the remaining superpixels are iteratively assigned based on their proximity to the foreground or background prior. As the threshold changes, different foreground priors generate multiple different partitions that are assigned a likelihood of being foreground. Last, all segments are combined into a saliency map based on the idea of similarity voting. Experiments on five benchmark databases demonstrate the proposed method performs well when it compares with the state-of-the-art methods in terms of accuracy and robustness.

A Real-time Motion Object Detection based on Neighbor Foreground Pixel Propagation Algorithm (주변 전경 픽셀 전파 알고리즘 기반 실시간 이동 객체 검출)

  • Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • Moving object detection is to detect foreground object different from background scene in a new incoming image frame and is an essential ingredient process in some image processing applications such as intelligent visual surveillance, HCI, object-based video compression and etc. Most of previous object detection algorithms are still computationally heavy so that it is difficult to develop real-time multi-channel moving object detection in a workstation or even one-channel real-time moving object detection in an embedded system using them. Foreground mask correction necessary for a more precise object detection is usually accomplished using morphological operations like opening and closing. Morphological operations are not computationally cheap and moreover, they are difficult to be rendered to run simultaneously with the subsequent connected component labeling routine since they need quite different type of processing from what the connected component labeling does. In this paper, we first devise a fast and precise foreground mask correction algorithm, "Neighbor Foreground Pixel Propagation (NFPP)" which utilizes neighbor pixel checking employed in the connected component labeling. Next, we propose a novel moving object detection method based on the devised foreground mask correction algorithm, NFPP where the connected component labeling routine can be executed simultaneously with the foreground mask correction. Through experiments, it is verified that the proposed moving object detection method shows more precise object detection and more than 4 times faster processing speed for a image frame and videos in the given the experiments than the previous moving object detection method using morphological operations.

Detection of View Reversal in a Stereo Video

  • Son, Ji Deok;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.317-321
    • /
    • 2013
  • This paper proposes a detection algorithm for view reversal in a stereoscopic video using a disparity map and motion vector field. We obtain the disparity map of a stereo image was obtained using a specific stereo matching algorithm and classify the image into the foreground and background. Next, the motion vector field of the image on a block basis was produced using a full search algorithm. Finally, the stereo image was considered to be reversed when the foreground moved toward the background and the covered region was in the foreground. The proposed algorithm achieved a good detection rate when the background was covered sufficiently by its moving foreground.

  • PDF

Dense Optical flow based Moving Object Detection at Dynamic Scenes (동적 배경에서의 고밀도 광류 기반 이동 객체 검출)

  • Lim, Hyojin;Choi, Yeongyu;Nguyen Khac, Cuong;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.277-285
    • /
    • 2016
  • Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map. Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.

Detection of View Reversal in a Stereo Video (스테레오 동영상에서의 좌우 영상 바뀜 검출 기법)

  • Son, Ji Deok;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.191-198
    • /
    • 2013
  • This paper proposes detection of view reversal in a stereo video using depth map and motion vector information. We obtain a depth map by using a stereo matching and divide the input image into foreground and background. Next, we obtain a motion vector field by using a motion estimation. In general, an occluded region is in background when foreground goes toward the adjacent background or the background goes toward the adjacent foreground. But, we will face with the change of foreground and background because their depths also change when view reversal occurs. Therefore, we can detect the view reversal in stereo videos by using the observation that the foreground goes toward the adjacent background or the background goes toward the adjacent foreground. The experimental results show that the proposed algorithm achieves good detection rate when the background region is sufficiently occluded by the moving foreground.

Removing Shadows for the Surveillance System Using a Video Camera (비디오 카메라를 이용한 감시 장치에서 그림자의 제거)

  • Kim, Jung-Dae;Do, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.176-178
    • /
    • 2005
  • In the images of a video camera employed for surveillance, detecting targets by extracting foreground image is of great importance. The foreground regions detected, however, include not only moving targets but also their shadows. This paper presents a novel technique to detect shadow pixels in the foreground image of a video camera. The image characteristics of video cameras employed, a web-cam and a CCD, are first analysed in the HSV color space and a pixel-level shadow detection technique is proposed based on the analysis. Compared with existing techniques where unified criteria are used to all pixels, the proposed technique determines shadow pixels utilizing a fact that the effect of shadowing to each pixel is different depending on its brightness in background image. Such an approach can accommodate local features in an image and hold consistent performance even in changing environment. In experiments targeting pedestrians, the proposed technique showed better results compared with an existing technique.

  • PDF

Head Detection based on Foreground Pixel Histogram Analysis (전경픽셀 히스토그램 분석 기반의 머리영역 검출 기법)

  • Choi, Yoo-Joo;Son, Hyang-Kyoung;Park, Jung-Min;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.179-186
    • /
    • 2009
  • In this paper, we propose a head detection method based on vertical and horizontal pixel histogram analysis in order to overcome drawbacks of the previous head detection approach using Haar-like feature-based face detection. In the proposed method, we create the vertical and horizontal foreground pixel histogram images from the background subtraction image, which represent the number of foreground pixels in the same vertical or horizontal position. Then we extract feature points of a head region by applying Harris corner detection method to the foreground pixel histogram images and by analyzing corner points. The proposal method shows robust head detection results even in the face image covering forelock by hairs or the back view image in which the previous approaches cannot detect the head regions.