• Title/Summary/Keyword: forecasting technique

Search Result 357, Processing Time 0.031 seconds

Long-Term Maximum Power Demand Forecasting in Consideration of Dry Bulb Temperature (건구온파를 오인한 장기최대전력수요예측에 관한 연구)

  • 고희석;정재길
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.10
    • /
    • pp.389-398
    • /
    • 1985
  • Recently maximum power demand of our country has become to be under the great in fluence of electric cooling and air conditioning demand which are sensitive to weather conditions. This paper presents the technique and algorithm to forecast the long-term maximum power demand considering the characteristics of electric power and weather variable. By introducing a weather load model for forecasting long-term maximum power demand with the recent statistic data of power demand, annual maximum power demand is separated into two parts such as the base load component, affected little by weather, and the weather sensitive load component by means of multi-regression analysis method. And we derive the growth trend regression equations of above two components and their individual coefficients, the maximum power demand of each forecasting year can be forecasted with the sum of above two components. In this case we use the coincident dry bulb temperature as the weather variable at the occurence of one-day maximum power demand. As the growth trend regression equation we choose an exponential trend curve for the base load component, and real quadratic curve for the weather sensitive load component. The validity of the forecasting technique and algorithm proposed in this paper is proved by the case study for the present Korean power system.

  • PDF

Time Series Forecasting Based on Modified Ensemble Algorithm (시계열 예측의 변형된 ENSEMBLE ALGORITHM)

  • Kim Yon Hyong;Kim Jae Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.137-146
    • /
    • 2005
  • Neural network is one of the most notable technique. It usually provides more powerful forecasting models than the traditional time series techniques. Employing the Ensemble technique in forecasting model, one should provide a initial distribution. Usually the uniform distribution is assumed so that the initialization is noninformative. However, it would be expected a sequential informative initialization based on data rather than the uniform initialization gives further reduction in forecasting error. In this note, a modified Ensemble algorithm using sequential initial probability is developed. The sequential distribution is designed to have much weight on the recent data.

DEVELOPMENT OF A REAL-TIME FLOOD FORECASTING SYSTEM BY HYDRAULIC FLOOD ROUTING

  • Lee, Joo-Heon;Lee, Do-Hun;Jeong, Sang-Man;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.113-121
    • /
    • 2001
  • The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.

  • PDF

A Study on Development of a Forecasting Model of Wind Power Generation for Walryong Site (월령단지 풍력발전 예보모형 개발에 관한 연구)

  • Kim, Hyun-Goo;Lee, Yeong-Seup;Jang, Mun-Seok;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a forecasting model of wind speed at Walryong Site, Jeju Island is presented, which has been developed and evaluated as a first step toward establishing Korea Forecasting Model of Wind Power Generation. The forecasting model is constructed based on neural network and is trained with wind speed data observed at Cosan Weather Station located near by Walryong Site. Due to short period of measurements at Walryong Site for training statistical model Gosan Weather Station's long-term data are substituted and then transplanted to Walryong Site by using Measure-Correlate-Predict technique. One to three-hour advance forecasting of wind speed show good agreements with the monitoring data of Walryong site with the correlation factors 0.96 and 0.88, respectively.

Forecasting Day-ahead Electricity Price Using a Hybrid Improved Approach

  • Hu, Jian-Ming;Wang, Jian-Zhou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2166-2176
    • /
    • 2017
  • Electricity price prediction plays a crucial part in making the schedule and managing the risk to the competitive electricity market participants. However, it is a difficult and challenging task owing to the characteristics of the nonlinearity, non-stationarity and uncertainty of the price series. This study proposes a hybrid improved strategy which incorporates data preprocessor components and a forecasting engine component to enhance the forecasting accuracy of the electricity price. In the developed forecasting procedure, the Seasonal Adjustment (SA) method and the Ensemble Empirical Mode Decomposition (EEMD) technique are synthesized as the data preprocessing component; the Coupled Simulated Annealing (CSA) optimization method and the Least Square Support Vector Regression (LSSVR) algorithm construct the prediction engine. The proposed hybrid approach is verified with electricity price data sampled from the power market of New South Wales in Australia. The simulation outcome manifests that the proposed hybrid approach obtains the observable improvement in the forecasting accuracy compared with other approaches, which suggests that the proposed combinational approach occupies preferable predication ability and enough precision.

Time Series Analysis of Patent Keywords for Forecasting Emerging Technology (특허 키워드 시계열 분석을 통한 부상 기술 예측)

  • Kim, Jong-Chan;Lee, Joon-Hyuck;Kim, Gab-Jo;Park, Sang-Sung;Jang, Dong-Sick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.355-360
    • /
    • 2014
  • Forecasting of emerging technology plays important roles in business strategy and R&D investment. There are various ways for technology forecasting including patent analysis. Qualitative analysis methods through experts' evaluations and opinions have been mainly used for technology forecasting using patents. However qualitative methods do not assure objectivity of analysis results and requires high cost and long time. To make up for the weaknesses, we are able to analyze patent data quantitatively and statistically by using text mining technique. In this paper, we suggest a new method of technology forecasting using text mining and ARIMA analysis.

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

Development of the Wind Power Forecasting System, KIER Forecaster (풍력발전 예보시스템 KIER Forecaster의 개발)

  • Kim Hyun-Goo;Lee Yung-Seop;Jang Mun-Seok;Kyong Nam-Ho
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.37-43
    • /
    • 2006
  • In this paper, the first forecasting system of wind power generation, KIER Forecaster is presented. KIER Forecaster has been constructed based on statistical models and was trained with wind speed data observed at Gosan Weather Station nearby Walryong Site. Due to short period of measurements at Walryong Site for training the model, Gosan wind data were substituted and transplanted to Walryong Site by using Measure-Correlate-Predict(MCP) technique. The results of One to Three-hour advanced forecasting models are consistent with the measurement at Walryong site. In particular, the multiple regression model by classification of wind speed pattern, which has been developed in this work, shows the best performance comparing with neural network and auto-regressive models.

  • PDF

A Study on Development of A Web-Based Forecasting System of Industrial Accidents (웹 기반의 산업재해 예측시스템 개발에 관한 연구)

  • Leem, Young-Moon;Hwang, Young-Seob;Choi, Yo-Han
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.269-274
    • /
    • 2007
  • Ultimate goal of this research is to develop a web-based forecasting system of industrial accidents. As an initial step for the purpose of this study, this paper provides a comparative analysis of 4 kinds of algorithms including CHAID, CART, C4.5, and QUEST. In addition, this paper presents the logical process for development of a forecasting system. Decision tree algorithm is utilized to predict results using objective and quantified data as a typical technique of data mining. The sample for this work was chosen from 10,536 data related to manufacturing industries during three years(2002$^{\sim}$2004) in korea.

  • PDF

An Idea, Strategy of Congestion Pricing for Differentiated Services and Forecasting Probability of Access using Logistic Regression Model (차등서비스를 위한 혼잡요금부과의 타당성 검토와 로지스틱 회귀모형을 이용한 인터넷 접속 확률 예측)

  • Ji Seonsu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • Congestion control is an important research area in computer network. In this paper, I provided strategy of congestion pricing with differentiated services. And, suggested forecasting model of access that considered differentiated pricing, delay time, satisfaction using logistic regression. In a forecasting model of access with logistic regression technique, it is shown that coefficient of determination using suggested model is $70.7\%$.

  • PDF