• Title/Summary/Keyword: forecasting technique

Search Result 357, Processing Time 0.029 seconds

A study on service parts demand forecasting considering parts life cycle (부품 수명주기를 고려한 서비스 부품의 수요예측에 관한 연구)

  • Kwon, Ick-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.97-107
    • /
    • 2017
  • This research studies on the demand forecasting for service parts considering parts life cycle, that gets relatively less attentions in the field of forecasting. Our goal is to develop forecasting method robust across many situations, not necessarily optimal for a limited number of specific situations. For this purpose, we first extensively analyze the drawbacks of the existing forecasting methods, then we propose the new demand forecasting method by using these findings and reinforcement leaning technique. Using simulation experiments, we proved that the proposed forecasting method is better than the existing methods under various experimental environments.

An Application of Case-Based Reasoning in Forecasting a Successful Implementation of Enterprise Resource Planning Systems : Focus on Small and Medium sized Enterprises Implementing ERP (성공적인 ERP 시스템 구축 예측을 위한 사례기반추론 응용 : ERP 시스템을 구현한 중소기업을 중심으로)

  • Lim Se-Hun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.1
    • /
    • pp.77-94
    • /
    • 2006
  • Case-based Reasoning (CBR) is widely used in business and industry prediction. It is suitable to solve complex and unstructured business problems. Recently, the prediction accuracy of CBR has been enhanced by not only various machine learning algorithms such as genetic algorithms, relative weighting of Artificial Neural Network (ANN) input variable but also data mining technique such as feature selection, feature weighting, feature transformation, and instance selection As a result, CBR is even more widely used today in business area. In this study, we investigated the usefulness of the CBR method in forecasting success in implementing ERP systems. We used a CBR method based on the feature weighting technique to compare the performance of three different models : MDA (Multiple Discriminant Analysis), GECBR (GEneral CBR), FWCBR (CBR with Feature Weighting supported by Analytic Hierarchy Process). The study suggests that the FWCBR approach is a promising method for forecasting of successful ERP implementation in Small and Medium sized Enterprises.

  • PDF

A System Marginal Price Forecasting Method Based on an Artificial Neural Network Using Time and Day Information (시간축 및 요일축 정보를 이용한 신경회로망 기반의 계통한계가격 예측)

  • Lee Jeong-Kyu;Shin Joong-Rin;Park Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.144-151
    • /
    • 2005
  • This paper presents a forecasting technique of the short-term marginal price (SMP) using an Artificial Neural Network (ANN). The SW forecasting is a very important element in an electricity market for the optimal biddings of market participants as well as for market stabilization of regulatory bodies. Input data are organized in two different approaches, time-axis and day-axis approaches, and the resulting patterns are used to train the ANN. Performances of the two approaches are compared and the better estimate is selected by a composition rule to forecast the SMP. By combining the two approaches, the proposed composition technique reflects the characteristics of hourly, daily and seasonal variations, as well as the condition of sudden changes in the spot market, and thus improves the accuracy of forecasting. The proposed method is applied to the historical real-world data from the Korea Power Exchange (KPX) to verify the effectiveness of the technique.

Very Short-term Electric Load Forecasting for Real-time Power System Operation

  • Jung, Hyun-Woo;Song, Kyung-Bin;Park, Jeong-Do;Park, Rae-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1419-1424
    • /
    • 2018
  • Very short-term electric load forecasting is essential for real-time power system operation. In this paper, a very short-term electric load forecasting technique applying the Kalman filter algorithm is proposed. In order to apply the Kalman filter algorithm to electric load forecasting, an electrical load forecasting algorithm is defined as an observation model and a state space model in a time domain. In addition, in order to precisely reflect the noise characteristics of the Kalman filter algorithm, the optimal error covariance matrixes Q and R are selected from several experiments. The proposed algorithm is expected to contribute to stable real-time power system operation by providing a precise electric load forecasting result in the next six hours.

Wind Power Pattern Forecasting Based on Projected Clustering and Classification Methods

  • Lee, Heon Gyu;Piao, Minghao;Shin, Yong Ho
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.283-294
    • /
    • 2015
  • A model that precisely forecasts how much wind power is generated is critical for making decisions on power generation and infrastructure updates. Existing studies have estimated wind power from wind speed using forecasting models such as ANFIS, SMO, k-NN, and ANN. This study applies a projected clustering technique to identify wind power patterns of wind turbines; profiles the resulting characteristics; and defines hourly and daily power patterns using wind power data collected over a year-long period. A wind power pattern prediction stage uses a time interval feature that is essential for producing representative patterns through a projected clustering technique along with the existing temperature and wind direction from the classifier input. During this stage, this feature is applied to the wind speed, which is the most significant input of a forecasting model. As the test results show, nine hourly power patterns and seven daily power patterns are produced with respect to the Korean wind turbines used in this study. As a result of forecasting the hourly and daily power patterns using the temperature, wind direction, and time interval features for the wind speed, the ANFIS and SMO models show an excellent performance.

Fast Data Assimilation using Kernel Tridiagonal Sparse Matrix for Performance Improvement of Air Quality Forecasting (대기질 예보의 성능 향상을 위한 커널 삼중대각 희소행렬을 이용한 고속 자료동화)

  • Bae, Hyo Sik;Yu, Suk Hyun;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.363-370
    • /
    • 2017
  • Data assimilation is an initializing method for air quality forecasting such as PM10. It is very important to enhance the forecasting accuracy. Optimal interpolation is one of the data assimilation techniques. It is very effective and widely used in air quality forecasting fields. The technique, however, requires too much memory space and long execution time. It makes the PM10 air quality forecasting difficult in real time. We propose a fast optimal interpolation data assimilation method for PM10 air quality forecasting using a new kernel tridiagonal sparse matrix and CUDA massively parallel processing architecture. Experimental results show the proposed method is 5~56 times faster than conventional ones.

Forecasting Multi-Generation Diffusion Demand based on System Dynamics : A Case for Forecasting Mobile Subscription Demand (시스템다이내믹스 기반의 다세대 확산 수요 예측 : 이동통신 가입자 수요 예측 적용사례)

  • Song, Hee Seok;kim, Jae Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.2
    • /
    • pp.81-96
    • /
    • 2017
  • Forecasting long-term mobile service demand is inevitable to establish an effective frequency management policy despite the lack of reliability of forecast results. The statistical forecasting method has limitations in analyzing how the forecasting result changes when the scenario for various drivers such as consumer usage pattern or market structure for mobile communication service is changed. In this study, we propose a dynamic model of the mobile communication service market using system dynamics technique and forecast the future demand for long-term mobile communication subscriber based on the dynamic model, and also experiment on the change pattern of subscriber demand under various scenarios.

Short-term Electric Load Forecasting Using Data Mining Technique

  • Kim, Cheol-Hong;Koo, Bon-Gil;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.807-813
    • /
    • 2012
  • In this paper, we introduce data mining techniques for short-term load forecasting (STLF). First, we use the K-mean algorithm to classify historical load data by season into four patterns. Second, we use the k-NN algorithm to divide the classified data into four patterns for Mondays, other weekdays, Saturdays, and Sundays. The classified data are used to develop a time series forecasting model. We then forecast the hourly load on weekdays and weekends, excluding special holidays. The historical load data are used as inputs for load forecasting. We compare our results with the KEPCO hourly record for 2008 and conclude that our approach is effective.

LSTM-based Deep Learning for Time Series Forecasting: The Case of Corporate Credit Score Prediction (시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례)

  • Lee, Hyun-Sang;Oh, Sehwan
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.241-265
    • /
    • 2020
  • Purpose Various machine learning techniques are used to implement for predicting corporate credit. However, previous research doesn't utilize time series input features and has a limited prediction timing. Furthermore, in the case of corporate bond credit rating forecast, corporate sample is limited because only large companies are selected for corporate bond credit rating. To address limitations of prior research, this study attempts to implement a predictive model with more sample companies, which can adjust the forecasting point at the present time by using the credit score information and corporate information in time series. Design/methodology/approach To implement this forecasting model, this study uses the sample of 2,191 companies with KIS credit scores for 18 years from 2000 to 2017. For improving the performance of the predictive model, various financial and non-financial features are applied as input variables in a time series through a sliding window technique. In addition, this research also tests various machine learning techniques that were traditionally used to increase the validity of analysis results, and the deep learning technique that is being actively researched of late. Findings RNN-based stateful LSTM model shows good performance in credit rating prediction. By extending the forecasting time point, we find how the performance of the predictive model changes over time and evaluate the feature groups in the short and long terms. In comparison with other studies, the results of 5 classification prediction through label reclassification show good performance relatively. In addition, about 90% accuracy is found in the bad credit forecasts.

Electricity Price Forecasting in Ontario Electricity Market Using Wavelet Transform in Artificial Neural Network Based Model

  • Aggarwal, Sanjeev Kumar;Saini, Lalit Mohan;Kumar, Ashwani
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.639-650
    • /
    • 2008
  • Electricity price forecasting has become an integral part of power system operation and control. In this paper, a wavelet transform (WT) based neural network (NN) model to forecast price profile in a deregulated electricity market has been presented. The historical price data has been decomposed into wavelet domain constitutive sub series using WT and then combined with the other time domain variables to form the set of input variables for the proposed forecasting model. The behavior of the wavelet domain constitutive series has been studied based on statistical analysis. It has been observed that forecasting accuracy can be improved by the use of WT in a forecasting model. Multi-scale analysis from one to seven levels of decomposition has been performed and the empirical evidence suggests that accuracy improvement is highest at third level of decomposition. Forecasting performance of the proposed model has been compared with (i) a heuristic technique, (ii) a simulation model used by Ontario's Independent Electricity System Operator (IESO), (iii) a Multiple Linear Regression (MLR) model, (iv) NN model, (v) Auto Regressive Integrated Moving Average (ARIMA) model, (vi) Dynamic Regression (DR) model, and (vii) Transfer Function (TF) model. Forecasting results show that the performance of the proposed WT based NN model is satisfactory and it can be used by the participants to respond properly as it predicts price before closing of window for submission of initial bids.