• Title/Summary/Keyword: force-control

Search Result 5,087, Processing Time 0.039 seconds

Control of Grasp Forces for Robotic Hands Based on Human Capabilities (인간의 손의 능력을 응용한 로봇 핸드의 힘 제어)

  • Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.71-81
    • /
    • 1996
  • This paper discusses a physiological approach motivated by the study of human hands for robot hand force control. It begins with an analysis of the human's grasping behavior to see how humans determine the grasp forces. The human controls the grasp force by sensing the friction force, that is, the weight of the object which is felt on his hand, but when slip is detected by sensing skin acceleration, the grasp force becomes much greater than the minimum force required for grasping by adding the force which is proportional to the acceleration. And two methods that can predict when and how fingers will slip upon a grasped object are considered. To emulate the human's capabilities, we propose a method for determination of as grasp force, which uses the change in the friction force. Experimental results show that the proposed method can be applied to control of robot hands to grasp objects of arbitrary weight stably without skin-like slip sensors.

  • PDF

Position/Force Control of Constrained Flexible Manipulators Using Structural Compliance Modeling (구조적 컴플라이언스 모델링을 이용한 구속받는 유연 매니퓰레이터의 위치/힘 제어)

  • Kim, Jin-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.114-119
    • /
    • 2002
  • The aim of this paper is to clarify the structural compliance of the constrained flexible manipulator and to develop the force control algorithm by using the compliance of the links. The proposed structural compliance control consists of the position control to utilize a flexible manipulator model (considering the compensation for the elastic deflection of links) and the passive force control to utilize the rigid manipulator model (without considering the compensation for the elastic deflection of links). We present the experimental results for the case when applying the only position control, and when applying the structural compliance control. Finally, a comparison between these results is presented to show the performance of our method.

A Force Reflecting Control for Telemanipulators with Control Input Saturation (제어입력 포화를 가지는 원격조작기의 힘반영 제어)

  • Ahn, Sung-Ho;Yoon, Ji-Sup;Lee, Sang-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.10
    • /
    • pp.572-581
    • /
    • 2000
  • When the manipulator consisting of high ratio gear reducers at its joints is used as the slave manipulator in teleoperated systems, its dynamic characteristics is much slower than that of the master manipulator and it is likely to encounter the saturation in the input magnitude. The control input saturation generates an windup phenomenon that the system stability and position tracking performance of the slave manipulator are to be deteriorated. This paper proposes an force reflecting control scheme and its design method which compensates the control input saturation with absolute stability. The proposed scheme is shown to give a stable force reflection while compensating for control input saturation effectively.

  • PDF

Force Control of a Pneumatic Driving System With a Long Transmission Line (전달관로를 고려한 공기압 구동장치의 힘 제어에 관한 연구)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.8-13
    • /
    • 2011
  • In the present study, a robust controller has been designed to control force for a pneumatic driving system considering the effect of a transmission line. Transfer characteristics of pneumatic transmission line should be changed according to the velocity of the air going through the transmission line. The designed controller is composed of two parts. The one is a feedback controller, which is composed of a stabilizing filter, a compensating filter of modelling error and a nominal model of the force control system, to compensate the influence of transmission line and improve the feedback characteristics of the control system, and, the other is a feedforward controller to achieve the control performance. Control results with the designed controller show that the robustness and performance of the control system are improved compared to the control results with a fixed gain controller.

A Force Control of Robot Manipulator Based on the Iterative Learning Control (반복 학습을 이용한 로봇 매니퓨레이터의 힘 제어)

  • 김대환;한창수;김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.577-583
    • /
    • 1994
  • The purpose of this paper is to study the force control law which can be implemented on a non-modified robot system. The external force control algorithm proposed in this paper can be designed by means of a classical and modern control law. We showed the validation and the possibility of muti-dimensional force control idea through the simulation and experiments. Also, the Iterative learning control is studied for compensating errors due to thr disturbances and nonlinear effects. The previous information(control input, error) was used to determine the control input of next trial. The experimental result show the vaidity of this algorithm.

  • PDF

New Robbt Force Control Technique for Deburring and Polishing Process (로봇의 디버링 작업이나 표면 광택작업을 위한 새로운 힘제어 기술 개발)

  • Jeong, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.786-795
    • /
    • 2000
  • In this paper, a new impedance force control method for deburring and polishing process is proposed. The proposed method is robust to deal with unknown environment stiffness as unknown well as environment location. An adaptive technique is used to minimize the force error occurred due to unknown environment surface profile. A robust position control algorithm based on time-delayed information is used to cancel out uncertainties in robot dynamics. A three link robot manipulator is used to demonstrate performances of the proposed control on deburring and polishing tasks. Stability analysis for the adaptive control is presented and its results are confirmed by simulations.

  • PDF

Auto Path Generation and Active Compliance Force Control Using 3-axis Grinding Robot (3축 그라인딩 로봇을 이용한 자동 경로 생성 및 능동 컴플라이언스 힘 제어)

  • Choo, Jung-Hoon;Kim, Soo-Ho;Lee, Sang-Bum;Kim, Jung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, an auto path generation and an active compliance grinding control using 3-axis farce sensor are presented. These control algorithms enable the grinding robot to follow unknown path of various workpiece shape pattern. The robot is able to go grinding along unknown paths by position controller managing tangential direction angle and cutting speed, with only information about the start position and the end position. Magnitude and direction of normal force are calculated using force data that go through low pass filter. Moreover, normal and tangential directions are separated for force control and velocity control, respectively.

Torque Sensorless Decentralized Position/Force Control for Constrained Reconfigurable Manipulator via Non-fragile H Dynamic Output Feedback

  • Zhou, Fan;Dong, Bo;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.418-429
    • /
    • 2018
  • This paper studies the decentralized position/force control problem for constrained reconfigurable manipulator without torque sensing. A novel joint torque estimation scheme that exploits the existing structural elasticity of the manipulator joint with harmonic drive model is applied for each joint module. Based on the estimated joint torque and dynamic output feedback technique, a decentralized position/force control strategy is presented. In order to solve the problem of controller parameter perturbation, the non-fragile robust technique is introduced into the dynamic output feedback controller. Subsequently, the stability of the closed-loop system is proved using the Lyapunov theory and linear matrix inequality (LMI) technique. Finally, two 2-DOF constrained reconfigurable manipulators with different configurations are applied to verify the effectiveness of the proposed control scheme in numerical simulation.

Force-Reflecting Teleoperation for Grinding Work

  • Choo, Jung-Hoon;Lee, Jae-Yong;Lee, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.824-828
    • /
    • 2003
  • This paper explains problems of force-reflecting teleoperation grinding work and proposes some methods to solve those. For stable contact between robot tool(grindstone) and contact surface the mechanical impedance force control is used. The sliding phenomenon of grindstone has been appeared at the contact surface during the grinding work. The sliding problems caused by friction and rotation of grindstone are eliminated by using tangential direction sliding compensation control. The rotation force of grindstone makes the tool move to tangential direction along the surface suddenly even though an operator pushes the tool only in normal direction to the surface. Normal direction force control is applied for grinder not to roll and fracture on the grinding surface. Vibration problem of grindstone is decreased by second order low-pass filter. Therefore we can precise grinding work at the grinding surface and feel the reality

  • PDF

Landing with Visual Control Reveals Limb Control for Intrinsic Stability

  • Lee, Aeri;Hyun, Seunghyun;Ryew, Checheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Repetition of landing with visual control in sports and training is common, yet it remains unknown how landing with visual control affects postural stability and lower limb kinetics. The purpose of this study was to test the hypothesis that landing with visual control will influence on lower limb control for intrinsic dynamic postural stability. Kinematics and kinetics variables were recorded automatically when all participants (n=10, mean age: 22.00±1.63 years, mean heights: 177.27±5.45 cm, mean mass: 73.36±2.80 kg) performed drop landings from 30 cm platform. Visual control showed higher medial-lateral force, peak vertical force, loading rate than visual information condition. This was resulted from more stiff leg and less time to peak vertical force in visual control condition. Leg stiffness may decrease due to increase of perturbation of vertical center of gravity, but landing strategy that decreases impulse force was shifted in visual control condition during drop landing. These mechanism explains why rate of injury increase.