• Title/Summary/Keyword: force transducer

Search Result 167, Processing Time 0.02 seconds

Development of Uniaxial Force Sensor Array for Tactile Sensation Using Fiber Bragg Gratings (광섬유 브래그 격자를 이용한 촉감감지용 단축 힘 센서 어레이 개발)

  • Heo, Jin-Seok;Lee, Jung-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1160-1165
    • /
    • 2006
  • In this paper, the 2-dimensional uniaxial force sensors array is introduced to detect the distributed force using fiber Bragg gratings. Uniaxial force transducer was designed to avoid the chirping and micro bending which degrade the performance of the sensor. The Brags wavelength shift of the sensor was estimated using the finite element analysis. Using this uniaxial force sensor, the uniaxial force sensors array $(3{\times}3)$ was fabricated, and the Performance of this sensors array was evaluated. The Presented sensors may has very simple configuration and its wiring is very simple compared with any other force sensors arrays.

FUZZY POSITION/FORCE CONTROL OF MINIATURE GRIPPER DRVEN BY PIEZOELECTRIC BIMORPH ACTUATOR

  • Kim, Young-Chul;Chonan, Seiji;Jiang, Zhongwei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.24.2-27
    • /
    • 1996
  • This paper is a study on the fuzzy force control of a miniature gripper driven by piezoelectric bimorph actuator. The system is composed of two flexible cantilevers, a stepping motor, a laser displacement transducer and two semiconductor force sensors attached to the beams. Obtained results show that the present artificial finger system works well as a miniature gripper, which produces approximately 0.06N force in the maximum. Further, the fuzzy position/force control algorithm is applied to the soft-handing gripper for stable grasping of a object. It revealed that the fuzzy rule-based controller be efficient controller for the stable drive of the flexible miniature gripper. It also showed that two semiconductor strain gauges located in the flexible beam play an important roles for force control, position control and vibration suppression control.

  • PDF

An Experimental Study on Lift Force Generation Resulting from Spanwise Flow in Flapping Wings

  • Hong, Young-Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.86-103
    • /
    • 2006
  • Using a combination of force transducer measurement to quantify net lift force, high frame rate camera to quantify and subtract inertial contributions, and Digital Particle Image Velocimetry (DPIV) to calculate aerodynamic contributions in the spanwise plane, the contribution of spanwise flow to the generation of lift force in wings undergoing a pure flapping motion in hover is shown as a function of flapping angle throughout the flapping cycle. These experiments were repeated at various flapping frequencies and for various wing planform sizes for flat plate and span wise cambered wings. Despite the previous identification of the importance of span wise fluid structures in the generation of lift force in flapping wings throughout the existing body of literature, the direct contribution of spanwise flow to lift force generated has not previously been quantified. Therefore, in the same manner as commonly applied to investigate the chordwise lift distribution across an airfoil in flapping wings, spanwise flow due to bulk flow and rotational fluid dynamic mechanisms will be investigated to validate the existence of a direct component of the lift force originating from the flapping motion in the spanwise plane instead.

Comparative Quantification of Contractile Force of Cardiac Muscle Using a Micro-mechanical Force Sensing System

  • Ryu, Seok-Chang;Park, Suk-Ho;Kim, Deok-Ho;Kim, Byung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1179-1182
    • /
    • 2005
  • To facilitate the cell based robot research, we presented a micro-mechanical force measurement system for the biological muscle actuators, which utilize glucose as a power source for potential application in a human body or blood vessels. The system is composed of a micro-manipulator, a force transducer with a glass probe, a signal processor, an inverted microscope and video recoding system. Using this measurement system, the contractile force and frequency of the cardiac myocytes were measured in real time and the magnitude of the contractile force of each cardiac myocyte on a different condition was compared. From the quantitative experimental results, we estimated that the force of cardiac myocytes is about $20{\sim}40\;{\mu}$N, and showed that there is difference between the control cells and the micro-patterned cells.

  • PDF

Contractile Force Measurements of Cardiac Myocytes Using a Micro-manipulation System

  • Park Suk-Ho;Ryu Seok-Kyu;Ryu Seok-Chang;Kim Deok-Ho;Kim Byung-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.668-674
    • /
    • 2006
  • In order to develop a cell based robot, we present a micro-mechanical force measurement system for the biological muscle actuators, which utilize glucose as a power source. The proposed measurement system is composed of a micro-manipulator, a force transducer with a glass probe, a signal processor, an inverted microscope and video recording system. Using this measurement system, the contractile force and frequency of the cardiac myocytes were measured in real time and the magnitudes of the contractile force of each cardiac myocyte under different conditions were compared. From the quantitative experimental results, we could estimate that the force of cardiac myocytes is about $20\sim40{\mu}N$, and show that there are differences between the control cells and the micro-patterned cells.

A study of biting force in long face and normal face adults (Long face와 Normal face인 성인에서의 교합력에 관한 연구)

  • Yoo, Tai-Jyung;Sohn, Byung-Wha
    • The korean journal of orthodontics
    • /
    • v.20 no.3 s.32
    • /
    • pp.541-552
    • /
    • 1990
  • Until now it has not surely been pointed out about the relation between the biting force and the facial types in scientific view. But it's correlation was assumed by several scientists : recently some literatures reported about the maximum biting force and facial types, but there's only a little articles about the relation between the biting force(biting force contain maximum biting force, chewing force and swallowing force) and facial type. So this study was, firstly, performed to establish the relation of the nomal face and long face versus biting force. 2ndly it was performed to establish the relation between the difference in mouth opening degrees versus biting force. 3rdly it was performed to establish the relation between male and female versus biting force. Biting force was measured from 56 adults (normal 26, long 30) whose samples was selected from Yonsei university students and Hospital patients. Sample was divided into 2groups (normal and long) by lateral cephalogram. The results of this study was obtained as follows. 1. Maximum biting force and chewing force in long face was smaller than normal face. 2. When the thickness of transducer was changed from 6m to 9mm, maximum biting force andchewingforcewaslargerthanbefore. 3. In case of comparing with male and female, male was larger than female in maximum biting force and chewing force.

  • PDF

Development of a Large Force Standard Machine with Built-in Force Transducers (내장형 힘 변환기를 이용한 대용량 힘 표준기 개발)

  • Gang, Dae-Im;Lee, Jeong-Tae;Song, Hu-Geun;Kim, Eom-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.667-675
    • /
    • 2000
  • Force measuring devices should be calibrated to guarantee their test results. In order to establish the force standards in Korea, deadweight machines of 5 kN, 20 kN, 100 kN and 500 kN capacity and a hydraulic force standard machine of 2 MN capacity were installed at the Korea Research Institute of Standards and Science(KRISS). As heavy industries in Korea have been developed, we should measure large forces over 2 MN capacity precisely in industries. We developed a 10 MN force standard machine with built-in force transducers which is more compact and cheaper than hydraulic force standard machines which have been widely used as large force standards in most national metrology laboratories. Test results reveal that the relative expanded uncertainty of the force machine is less than 4.1 $\times$ 10-4 in the range of 1 MN-4.5 MN.

A Force/Moment Direction Sensor and Its Application in Intuitive Robot Teaching Task

  • Park, Myoung-Hwan;Kim, Sung-Joo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.236-241
    • /
    • 2001
  • Teach pendant is the most widely used means of robot teaching at present. Despite the difficulties of using the motion command buttons on the teach pendant, it is an economical, robust, and effective device for robot teaching task. This paper presents the development of a force/moment direction sensor named COSMO that can improve the teach pendant based robot teaching. Robot teaching experiment of a six axis commercial robot using the sensor is described where operator holds the sensor with a hand, and move the robot by pushing, pulling, and twisting the sensor in the direction of the desired motion. No prior knowledge of the coordinate system is required. The function of the COSMO sensor is to detect the presence f force and moment along the principal axes of the sensor coordinate system. The transducer used in the sensor is micro-switch, and this intuitive robot teaching can be implemented at a very low cost.

  • PDF

An investigation into the effect of denture adhesives on incisal bite force of complete denture wearers using pressure transducers - a clinical study

  • Kalra, Pawan;Nadiger, Ramesh;Shah, Farhan Khalid
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • Study was conducted to determine and assess the effect of different type of denture adhesives on the incisal bite force of complete denture wearers until the dislodgement of upper denture, using pressure transducer. MATERIALS AND METHODS. 30 patients out of 100 were included in the study. Based on the Kapur's method of scoring denture retention and stability, these patients were divided into 3 groups-Group A - Clinically good dentures; Group B - Clinically fair dentures; and Group C - Clinically poor dentures. A custom made occlusal force meter was constructed based on the load cell type of pressure transducers. Different adhesives (powder, paste and adhesive strips) were used in the study. Complete denture wearers were asked to bite on the load cell and the readings of incisal bite force were recorded. The readings of incisal bite force were subjected to statistical analysis using Repeated measures ANOVA followed by post-hoc bonferroni test. RESULTS. The result suggests that denture adhesives improved the incisal bite force of complete denture wearers significantly The incisal bite force (in kg) in Group A without using adhesives, with powder adhesive, with paste adhesive and with adhesive strips was found to be 2.48 (${\pm}0.16$), 3.43 (${\pm}0.11$), 6.01 (${\pm}0.11$), 3.22 (${\pm}0.09$) respectively. The incisal bite force (in kg) in Group B without using adhesives, with powder adhesive, with paste adhesive and with adhesive strips was found to be 1.87 (${\pm}0.18$), 3.35 (${\pm}0.14$), 5.34 (${\pm}0.18$), 3.21 (${\pm}0.12$) respectively. The incisal bite force (in kg) in Group C without using adhesives, with powder adhesive, with paste adhesive and with adhesive strips was found to be 1.00 (${\pm}0.17$), 3.07 (${\pm}0.14$), 4.37 (${\pm}0.26$), 2.99 (${\pm}0.14$) respectively. CONCLUSION. Within the limitations of the study, it was concluded that the use of denture adhesive was found to be significantly effective in improving the incisal bite force of complete dentures until the dislodgement of upper denture. Fittydent paste adhesive was found to be more effective than the powder and strips adhesives. The improvement in incisal bite force was found to be higher in Group C in comparison to that of Group A and Group B.

Design of electromagnetic type transducer to drive round window with high efficiency (고효율 전자기형 정원창 구동 트랜스듀서의 설계)

  • Lee, Jang-Woo;Kim, Dong-Wook;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • Implantable middle ear hearing devices(IMEHDs) have being actively studied to overcome the problems of conventional hearing aids. Vibration transducer, an output devices of IMEHDs, is attached on the ossicular chain and transmits mechanical vibration to cochlea. This approach allows us to hear more clear sound because mechanical vibration is effective to transfer high frequency acoustics, but occurs some problems such as fatigue accumulation to ossicular chian and reduction of vibration displacement caused by mass loading effect. Recently, many studies for the round window stimulation are announced, because it does not cause such problems. It have been studied by older transducers designed for attaching on ossicular chain. In this paper, we proposed a new electromagnetic transducer which consists of two magnets, three coils and a vibration membrane. The magnet assembly, magnet coupled in opposite direction, were placed in the center of three coils, and the optimum length of each coil generating maximum vibrational force was calculated by finite element analysis(FEA). The transducer was implemented as the calculated length of each coil, and measured vibration displacement. From the results, it is verified the vibration displacement can be improved by optimizing the length of coils.