• 제목/요약/키워드: force sensing

검색결과 350건 처리시간 0.027초

Cellular machinery for sensing mechanical force

  • Lim, Chul-Gyun;Jang, Jiyoung;Kim, Chungho
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.623-629
    • /
    • 2018
  • For mechanical force to induce changes in cellular behaviors, two main processes are inevitable; perception of the force and response to it. Perception of mechanical force by cells, or mechanosensing, requires mechanical force-induced conformational changes in mechanosensors. For this, at least one end of the mechanosensors should be anchored to relatively fixed structures, such as extracellular matrices or the cytoskeletons, while the other end should be pulled along the direction of the mechanical force. Alternatively, mechanosensors may be positioned in lipid bilayers, so that conformational changes in the embedded sensors can be induced by mechanical force-driven tension in the lipid bilayer. Responses to mechanical force by cells, or mechanotransduction, require translation of such mechanical force-induced conformational changes into biochemical signaling. For this, protein-protein interactions or enzymatic activities of mechanosensors should be modulated in response to force-induced structural changes. In the last decade, several molecules that met the required criteria of mechanosensors have been identified and proven to directly sense mechanical force. The present review introduces examples of such mechanosensors and summarizes their mechanisms of action.

Position and Force Control of a Sensorized Microgripper

  • Kim, Sang-Min;Kim, Deok-Ho;Kim, Kyunghwan;Kim, Byungkyu;Chung, Chung-Choo;Jaehong Shim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.43.1-43
    • /
    • 2002
  • 1. Introduction 2. Design of the Sensorized Microgripper 3. Sensing and Control of Position and Force 4. Experiments 5. Conclusions

  • PDF

3 축 힘센서를 이용한 지능형 그리퍼 개발 (Development of the Intelligent Gripper Using Two 3-axis Force Sensor)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.47-54
    • /
    • 2007
  • This paper describes the development of the intelligent gripper with two 3-axis force sensor that can measure forces Fx, Fy, Fz simultaneously, for stably grasping an unknown object. In order to grasp an unknown object using an intelligent gripper softly, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured farces. Thus, the intelligent gripper should be composed of 3-axis force sensor that can measure forces Fx, Fy, Fz at the same time. In this paper, the intelligent gripper with two 3-axis force sensor was manufactured and its characteristic test was carried out. The fabricated gripper could grasp an unknown object stably. Also, the sensing element of 3-axis force sensor was modeled and designed with five parallel-plate beams, and 3-axis force sensor for the intelligent gripper was fabricated. The characteristic test of the made sensor was carried out.

Multiple Pivot loading 방법을 이용한 액체 환경에서의 수평방향 힘 교정 (Lateral Force Calibration in Liquid Environment using Multiple Pivot Loading)

  • 김류운;정구현
    • Tribology and Lubricants
    • /
    • 제29권2호
    • /
    • pp.91-97
    • /
    • 2013
  • Quantifying the nanoscale force between the atomic force microscopy (AFM) probe of a force-sensing cantilever and the sample is one of the challenges faced by AFM researchers. The normal force calibration is straightforward; however, the lateral force is complicated due to the twisting motion of the cantilever. Force measurement in a liquid environment is often needed for biological applications; however, calibrating the force of the AFM probes for those applications is more difficult owing to the limitations of conventional calibration methods. In this work, an accurate nondestructive lateral force calibration method using multiple pivot loading was proposed for liquid environment. The torque sensitivity at the location of the integrated probe was extrapolated based on accurately measured torque sensitivities across the cantilever width along a few cantilever lengths. The uncertainty of the torque sensitivity at the location of the integrated tip was about 13%, which is significantly smaller than those for other calibration methods in a liquid environment.

티타늄 합금 플랜지 볼트 성형에서의 단조력 간접 측정을 위한 열간 단조 공정 모니터링에 관한 연구 (A study on a hot forging process monitoring for measurement of indirect forging force in flange bolt forming of titanium alloys)

  • 하석재;최두선;이동원;송기혁
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.14-20
    • /
    • 2021
  • The objective of this study is to introduce the new possibility of sensing technology based on inductive displacement sensors to monitor the status of wheel position in the hot forging process. In order to validate effectiveness of proposed sensing technology, the indirect forging force measurement with displacement sensor was applied into a typical closed hot forging die-set used for the manufacturing of flange bolts. The locations to implement the displacement sensor were selected carefully by simulating forming process and static structural. From the measurement results of the forging force change during one hot forging cycle, it was found that the proposed monitoring system can provide useful information to understand the detailed behaviors of die-set in the closed hot forging process.

Current Sensing Atomic Force Microscopy를 이용한 PEM의 수화 현상에 따른 모폴로지 변화 연구 (Current Sensing Atomic Force Microscopy Study of the Morphological Variation of Hydrated Pronton Exchange Membrane)

  • 권오성;이상철;손병락;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.9-16
    • /
    • 2014
  • A proton exchange membrane is a core component in the proton exchange membrane fuel cell because the role of proton exchange membrane(PEM)is supplying proton conductivity to fuel cell, a gas separator, and insulating between an anode and cathode. Among various role of PEM, supplying proton conductivity is the most important and the proton conductivity is strongly related the structural evolution of PEM by hydration. Thus a lot of studies have done by past few decade based on small angle X-ray scattering and wide angle X-ray scattering for understanding morphological structure of the PEM. Resulting from these studies, several morphological models of hydrated PEM are proposed. Current sensing atomic force microscopy (CSAFM) can map morphology and conductance on the membrane simultaneously. It can be the best tool for studying heterogenous structured materials such as PEM. In this study, the hydration of the membrane is examined by using CSAFM. Conductance and morphological images are simultaneously mapped under different relative humidity. The conductance images, which are mapped from different relative humidity, are analyzed by statistical methode for understanding ionic channel variation in PEM.

Performance monitoring of offshore PHC pipe pile using BOFDA-based distributed fiber optic sensing system

  • Zheng, Xing;Shi, Bin;Zhu, Hong-Hu;Zhang, Cheng-Cheng;Wang, Xing;Sun, Meng-Ya
    • Geomechanics and Engineering
    • /
    • 제24권4호
    • /
    • pp.337-348
    • /
    • 2021
  • Brillouin Optical Frequency Domain Analysis (BOFDA) is a distributed fiber optic sensing (DFOS) technique that has unique advantages for performance monitoring of piles. However, the complicated production process and harsh operating environment of offshore PHC pipe piles make it difficult to apply this method to pile load testing. In this study, sensing cables were successfully pre-installed into an offshore PHC pipe pile directly for the first time and the BOFDA technique was used for in-situ monitoring of the pile under axial load. High-resolution strain and internal force distributions along the pile were obtained by the BOFDA sensing system. A finite element analysis incorporating the Degradation and Hardening Hyperbolic Model (DHHM) was carried out to evaluate and predict the performance of the pile, which provides an improved insight into the offshore pile-soil interaction mechanism.

AFM을 이용한 나노스케일 힘의 정량적 측정 (Quantitative Measurement of Nano-scale Force using Atomic Force Microscopy)

  • 정구현
    • Tribology and Lubricants
    • /
    • 제28권2호
    • /
    • pp.62-69
    • /
    • 2012
  • Atomic force microscopy (AFM) has been widely utilized as a versatile tool not only for imaging surfaces but also for understanding nano-scale interfacial phenomena. By measuring the responses of the photo detector due to bending and torsion of the cantilever, which are caused by the interactions between the probe and the sample surface, various interfacial phenomena and properties can be explored. One of the challenges faced by AFM researchers originates in the physics of measuring the small forces that act between the probe of a force sensing cantilever and the sample. To understand the interactions between the probe and the sample quantitatively, the force calibration is essential. In this work, the procedures used to calibrate AFM instrumentation for nano-scale force measurement in normal and lateral directions are reviewed.

3자유도 힘 반향 역감장치 (3DOF Force-Reflecting interface)

  • 강원찬;박진석;김대현;신석두;김영동
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.71-75
    • /
    • 1999
  • In this paper, we present the 3DOF force-reflecting interface which allows to acquire force of object within a virtual environment. This system is composed of device, virtual environment model, and force-reflecting rendering algorithm. We design a 3 DOF force-reflecting device using the parallel linkage, torque shared by wire, and the controller of system applied by impedance control algorithm. The force-reflecting behaviour implemented as a function position is equivalent to controlling the mechanical impedance felt by the user. Especially how force should be supplied to user, we know using a God-Object algorithm. As we experiment a system implemented by the interface of 3D virtual object and 3DOF force-reflecting interface, we can feel a contact, non-contact of 3D virtual object surface and sensing of push button model.

  • PDF