• 제목/요약/키워드: force feedback control

검색결과 417건 처리시간 0.022초

COLLECTIVE BEHAVIORS OF SECOND-ORDER NONLINEAR CONSENSUS MODELS WITH A BONDING FORCE

  • Hyunjin Ahn;Junhyeok Byeon;Seung-Yeal Ha;Jaeyoung Yoon
    • 대한수학회지
    • /
    • 제61권3호
    • /
    • pp.565-602
    • /
    • 2024
  • We study the collective behaviors of two second-order nonlinear consensus models with a bonding force, namely the Kuramoto model and the Cucker-Smale model with inter-particle bonding force. The proposed models contain feedback control terms which induce collision avoidance and emergent consensus dynamics in a suitable framework. Through the cooperative interplays between feedback controls, initial state configuration tends to an ordered configuration asymptotically under suitable frameworks which are formulated in terms of system parameters and initial configurations. For a two-particle system on the real line, we show that the relative state tends to the preassigned value asymptotically, and we also provide several numerical examples to analyze the possible nonlinear dynamics of the proposed models, and compare them with analytical results.

Position Control of Chained Multiple Mass-Spring-Damper Systems - Adaptive Output Feedback Control Approaches

  • S. S. Ge;L. Huang;Lee, T. H.
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권2호
    • /
    • pp.144-155
    • /
    • 2004
  • This paper addresses the issue of position control of a chain of multiple mass-spring-damper (CMMSD) units which can be found in many physical systems. The dynamic model of a CMMSD system with any degrees of freedom is expressed in a closed-form for the convenience of the controller design. Backstepping and model reference adaptive control (MRAC) approaches are then used to develop two adaptive output feedback controllers to control the position of a CMMSD system. The proposed controllers rely on the measurements of the input (force) and the output (position of the mass unit at the end of the chain) of the system without the knowledge of its parameters and internal states. Simulations are used to verify the effectiveness of the controllers

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

노즐/플래퍼형 유량제어 서보밸브의 특성에 관한 연구 (A Study On Characteristics of Nozzle/Flapper Type Flow Control Servo Valve)

  • 윤소남;강보식;성백주;김형의
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.54-62
    • /
    • 2000
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of flow control servo valve with high response characteristics, and to verify the validity of the design factors. In this study, force feedback type flow control valve with nozzle/flapper and with no drain is studied. And, the effect of the parameters, such as fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

USB를 이용한 2자유도 햅틱장치 제어에 관한 연구 (Control of 2 DOF Haptic Device using USB)

  • 이종배;성하경;김주한;임준홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2665-2667
    • /
    • 2002
  • Force feedback control is investigated for improving the quality of the haptic feedback in virtual reality applications. We proposed method for control of the haptic device using universal serial bus(USB), and evaluated the characteristics with experimental set.

  • PDF

이족 보행 로봇을 위한 빠르고 안전한 접촉 생성 전략 (Fast and Safe Contact Establishment Strategy for Biped Walking Robot)

  • 이호상;정재석;안준휘;박재흥
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.147-154
    • /
    • 2021
  • One of the most challenging issues when robots interact with the environment is to establish contact quickly and avoid high impact force at the same time. The proposed method implements the passive suspension system using the redundancy of the torque-controlled robot. Instead of utilizing the actual mechanical compliance, the distal joints near the end-effector are controlled to act as a virtual spring-damper system with low feedback gains. The proximal joints are precisely controlled to push the mid-link, which is defined as the boundary link between the proximal and distal joints, towards the environment with high feedback gains. Compared to the active compliance methods, the contact force measurements or estimates are not required for contact establishment and the control time delay problems do not occur correspondingly. The proposed method was applied to the landing foot control of the 12-DoF biped robot DYROS-RED in the simulations. In the results, the impact force during landing was significantly reduced at the same collision speed.

전자기력에 의한 자성유체의 2차원 자유표면 형상 제어에 관한 연구 (A Study on the Two-dimensional Formation Control of Free Surface of Magnetic Fluid by Electromagnetic Force)

  • 배형섭;양택주;이육형;주동우;박명관
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.29-37
    • /
    • 2005
  • In this study, the control of the free surface deformation of a magnetic fluid for the change in electromagnetic force is discussed. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. Magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage sealing, oscillator for surface control, boundary layer control, MHD, flow control, flow using magnetic levitation system and surface actuator. This study show the deformation of surface rise due to the intensity of the magnetic field and possibility of two-dimensional control of magnetic fluid through the feedback data of hall sensor.

햅틱 제어에 의한 원격작업의 안전성 향상 (Safety Enhancement of Teleoperation using Haptic Control)

  • 김윤배;최기상;최기흥
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.19-25
    • /
    • 2013
  • For safe remote control, information on remote environment has to be delivered to operator realistically, and there have been numerous research efforts on this respect. Among them, haptic technology can significantly enhance safety and overall effectiveness of remote operation by delivering various kinds of information on virtual or real environment to operator. In this study, remote control based on haptic feedback is applied to control of mobile robot moving according to the command from operator avoiding collision with environmental obstacles and maintaining safe distance from them using ultrasonic sensors. Specifically, a remote feedback control structure for mobile robot is proposed. The controller is based on the inner feedback loop that directly utilizes information on distance to obstacles, and the outer feedback loop that the operator directly commands using the haptic device on which the computed reaction force based on the distance information is acting. Effectiveness of the proposed remote control scheme using double feedback loops is verified through a series of experiments on mobile robot.

위치/힘 제어가 가능한 유성기어 기반의 더블 액츄에이터 유닛 (Double Actuator Unit based on the Planetary Gear Train Capable of Position/Force Control)

  • 김병상;박정준;송재복;김홍석
    • 로봇학회논문지
    • /
    • 제1권1호
    • /
    • pp.81-88
    • /
    • 2006
  • Control of a robot manipulator in contact with the environment is usually conducted by the direct feedback control using a force-torque sensor or the indirect impedance control. In these methods, however, the control algorithms become complicated and the performance of position and force control cannot be improved because of the mechanical properties of the passive components. To cope with such problems, redundant actuation has been used to enhance the performance of position control and force control. In this research, a Double Actuator Unit (DAU) is proposed, with which the force control algorithm can be simplified and can make the robot ensure the safety during the external collision. The DAU is composed of two actuators; one controls the position and the other modulates the joint stiffness. Using this unit, it is possible to independently control the position and stiffness. The DAU based on the planetary gears is investigated in this paper. Performance using the DAU is also verified by various experiments. It is shown that the manipulator using this mechanism provides better safety during the impact with the environment by reducing the joint stiffness appropriately on detecting the collision of a manipulator.

  • PDF

자기부상 시스템의 부상제어기 설계 (A Levitation Controller Design for a Magnetic Levitation System)

  • 김종문;강도현;박민국;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권6호
    • /
    • pp.342-350
    • /
    • 2003
  • In this paper, a levitation controller for a magnetic levitation(MagLev) system is designed and implemented. The target to be controlled is PEM(permanent and electromagnet) type with 4-corners levitation which is open-loop unstable, highly non-linear and time-varying system. The digital control system consists of a VME-based CPU board, AD board, PU board, 4-Quadrant chopper, and gap sensor, accelerometer as feedback sensors. In order to estimate the velocity of the magnet, we used 2nd-order state observer with acceleration and gap signal as input and output, respectively. Using the estimated states, a state feedback control law for the plant is designed and the feedback gains are selected by using the pole-placement method. The designed controller is experimentally validated by step-type gap reference change and force disturbance test.