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Position Control of Chained Multiple Mass-Spring-Damper Systems —
Adaptive Output Feedback Control Approaches

S. S. Ge, L. Huang, and T. H. Lee

Abstract: This paper addresses the issue of position control of a chain of multiple mass-
spring-damper (CMMSD) units which can be found in many physical systems. The dynamic
model of a CMMSD system with any degrees of freedom is expressed in a closed-form for the
convenience of the controller design. Backstepping and model reference adaptive control
(MRAC) approaches are then used to develop two adaptive output feedback controllers to
control the position of a CMMSD system. The proposed controllers rely on the measurements
of the input (force) and the output ( position of the mass unit at the end of the chain) of the
system without the knowledge of its parameters and internal states. Simulations are used to

verify the effectiveness of the controllers

Keywords: Adaptive control, output feedback, position control, robotics.

1. INTRODUCTION

Chained multiple mass-spring-damper (CMMSD)
units are found in many physical systems such as
hyper-redundant mechanical systems [1], flexible link
Robots [2-5] and multi-mass systems for vibration
absorbers [6], to name a few. The position control of a
CMMSD system is challenging due to the difficulties
in measuring its system parameters and internal states
which are “hidden” in a chain of mass-spring-damper
units. One typical example is the control of a robot
constrained by a flexible constraint where the
measurement of the constraint states are almost
impossible [4]. It was proved that the model free
linear controller such as PID control is not effective to
control a CMMSD system [2,7,8]. Though a CMMSD
system model can be transformed into a group of
decoupled integrators and the controller design can be
simplified through the feedback linearization, it needs
undesirable high order derivatives of the system states
and introduces unstable internal dynamics into the
controlled system [2,7]. Though singular perturbation
is a powerful tool to make the controller design
simpler and effective for CMMSD systems [7], the
requirement of very large stiffnesses inside the
CMMSD system limited its applications.

To control an uncertain CMMSD system when only
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the input (the force acting at the end of the chain) and
the output (position of the mass unit at another end of
the chain) are measurable, adaptive output feedback
control should be investigated. The dynamic models
of the CMMSD systems do not provide the matching
condition, thus a lengthy state transformation is
needed before the traditional non-recursive adaptive
output feedback control approaches, such as model
reference adaptive control (MRAC) can be applied
[15]. On the other hand, CMMSD systems are
recursive in their physical structures and their
dynamic models can be expressed in the parametric
strict feedback forms suitable for backstepping design
[9]. Though CMMSD systems of low degrees of
freedom are fairly simple in structure, control system
design for the CMMSD system of high degrees of
freedom is still worth investigation owing to the
difficulties explained. As one of the contributions of
the paper, a closed-form description is given for a
CMMSD system of arbitrary degrees of freedom. To
the best of our knowledge, this is the first time in the
literature a closed form expression of the system
model is reported for a general CMMSD system. In
fact, the closed-form description lays the foundation
for the design of two neat and concise adaptive output
feedback controls. The beauty of the controllers
presented lies in their clarity and elegant applications
of existing theories in solving practical problems,
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Fig. 1. A general chained multiple mass spring system
(CMMSD).
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rather than fundamental contributions in theory. Both
backstepping and MRAC methods are used to develop
two adaptive output feedback controllers respectively
to control the position of CMMSD systems without
special requirements on the system parameters (unlike
singular  perturbation approach which requires
sufficiently large stiffnesses of the springs in the
CMMSD system), without the need for undesirable
high derivative of system states and avoid unstable
internal dynamics. The asymptotical stability of the
controlled system is guaranteed under the controllers
proposed. The main contributions of the paper are as
follows:

» the establishment of a closed form description for

a general CMMSD system with arbitrary any
number of mass-spring-damper units with any
stiffness of the spring, and

« the development of two elegant adaptive output

feedback position controllers — backstepping based
and MRAC based, that are independent of the
system parameters and undesirable high derivative
of system states.

The rest of paper is organized as follows. In Section 2,
the dynamic model of the system is given. In Section 3,
two adaptive output feedback controllers are devel-
oped with backstepping and MRAC approaches re-
spectively. In section 4, the simulation study is done to
verify and compare the effectiveness of the approaches
proposed. The conclusion is given in Section 5.

2. DYNAMIC MODELING AND PROBLEM
FORMULATION

A chained multiple mass spring system with »
mass units is schematically shown in Fig. 1, where
m; is the mass, b; is the viscous coefficient and ¢;
is the displacement measured from the equilibrium
position along the Y axis of the ; th unit
(i=1,2...n). There are n—1 springs connecting the
mass units with k; being the linear spring constant

(i=1,2...n-1). It is understood that only ¢, the
output of the system, and u, the input force, are
measurable.

According to Newton’s second law, we have the
following system dynamics:

mg, = —bq +k(q, —q1)=-bq — kg + k9,
MyGs = —bygy —(ky +k2)gs + kiqy + kags,
miG; = —big; — (ki +k)g; +k; 9, + kg +1, (1)

(i=3,4,---,n-1),
mn‘q‘n = _ann —kn~IQn +kn—]qn~1 Tu
Defining X =¢1, X2 =4y, X3=4q2, X;3=4q5, ",

Xoil1 =i, X0;=q;, 7, X174y, X2,=9,,

2 .. .
x=[x x, ...xzn]T €R™ |, the original dynamic

system (1) is transformed to the following state space
model:

X =Ax+bu, )

X =qx, (3)
where
by =my ¢y,
A=A A A AL AL ALY
4 =df,
4, = —ml_l(klc1T+b]c;—klc3T),
Ay =5,
= m; (ki3 k) b))
+m kel (1=2,3...n-1),
Ay g =l
Ay =y (kg 1O 3y 1y =3
and €; is the jth column vector of identity matrix
Ly, (j=1,2,---2n),
Applying Laplace transformation on equations (2)

and (3), the system dynamic model in the s domain
is obtained:

)(1 (S) = H2n (S)U(S) » (4)

X;(s) and U(s) are the

transformation of x| and u respectively, and >,
is the transfer function defined as

where Laplace

d2n

T -1
Hy,(s)=¢j (sly, — A,) b, = 2n 2n-1 J
§7+ X500 Ay S

(3

The coefficients in the transfer function are
expressed as the explicit functions of the system
parameters in Appendix 1. For clarity, their detailed
and involved derivations are omitted.

Remark 1: For a CMMSD of arbitrary any
degrees of freedom, we have obtained a closed-form
description (5) that is explicitly expressed as the
functions of the system parameters. This closed-form
expression is not only essential for the control design
discussed in this paper, but also very convenient and
useful for simulation and system analysis.

Re-writing the state space equations in observer
canonical form for system (4), we have

v =Ay+ B(yl,u)Te,
(6)

T
Nn=xq=qy,

where
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y] =Y2 2 2p-1 N

Yi=Yis1 —Dn20-iN

.)./277 = d2nu

0
A=t Dy,
0O - 0

B =[cyu ~Ipy]
O=[dsr, @241 Gp2n—2 921 azn,o]T-
Note that B e R 1*2" s a matrix formed by the
input # and the output Y1, and geR*"! is a
vector of the
(j=0,1,2,---2n).
Remark 2: It is essential to re-write the system
model in observer canonical form (6) so that the states
can be reconstructed for output feedback control de-

sign that follows. As clearly shown, this is only possi-
ble after the closed-form description (5) is obtained.

coefficients d,, and 9y, ;

3. CONTROLLER DESIGN

In this section, adaptive output feedback is
investigated based on the observer canonical form (6)
of the CMMSD system. The control objective is to
regulate the output ); to zero when the system
parameters are unknown and the system states are not
measurable.

In the following, both backstepping and MRAC
approaches are investigated, respectively.

3.1. Adaptive output feedback control using back-

stepping
First, let us consider the following K -filters [9]:
& = A+, Y
o' = 49" + B0, ®)

where §€R2n and 7 ¢ R2(2n+D) are the outputs
of the filters, and A=[)\ xz...xzn]T eR™  are
parameters that are chosen such that

Ay = A—-2cl e R

. ©
Pdy+ Al P=-0<0

for any given symmetric positive definite matrices
P c R2n><2n and Q e R2n><2n
clarity, we will take O =1,, in the paper.

. For simplicity and

To reduce the order of the filters, 7 is chosen as
Q" =[v Q)]

T 2
where v=[v v»..n,] €R !

y

Qr=[n My .- Maule R, and njeRZ"
(j=1,2,...,2n),
With v and €2 so defined, we have
V=Ayv+cy,u,
et o)
Q=4HQ— 1"y

Due to the special structure of 4y and from
equations (7) and (10), we have

M0 = AoM2n ~ C20)15
Ny =4" . (1n)
&= 4"y,
With K filters determined above, the estimate of ¥
is given by

y=£+0Q0. (12)

It can be showed that the state estimation error
follows

&= Aye. (13)
Defining a Lyapunov function
V,=¢" Pe (14)

and differentiating it with respect to time 7, since 4
is symmetric we have

. =2¢ Pé.
From equations (9) and (13), it can be concluded that
. 2
Ve= —||8” and & approach zero while 7 > 0.

From equations (11) and (12), and considering
equations (6) and (8), we have

T T
V= Ay My, +w B+gy

T 42 —T (15)

=0 AOanZn +d2nV2 +w e+829
V2= V3 =AW, (16)
"}l.:VH_l —)le (123,42}7-1), (17)

Vvon = —AaV T U,

where

T 4T 7T
W:[VZ nZnAn 4Ly ] ’

w=[0 Wl =1ef 17,
A=AV ey Al ey T
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Equations (15) to (17) represent a transformed

dynamic system with the measurable v and W
being its states. To facilitate the controller design with
backstepping method, we also need the following
coordinate transformation:

1=y, (18)

Zi:Vi_al'il, iZZ,
(19)

ZZ[ZI Zz...Zzn]T,

where Z; is the new state and ¢; is the so called
stabilization function or virtual control to be
determined in the steps of the controller design.

The backstepping design involves 2n steps. A
Lyapunov function is constructed, and from which, a
stabilizing function 9; is determined in every step.
In addition, a function called tuning function T is
also generated in each step to estimate the uncertain
system parameters. In the last step 2#n, the control
input u is derived.

Step 1. In this step, we begin with the study of the

tracking error Z. Its equation can be derived from
equations (15), (18) and (19), such that

21 :dzn(xl +C;A§nn2n +;,T6+d2n22 +E&5. (20)
Considering the following virtual control:

where d is the estimate of 1/d,,, and substituting it
into equation (20) leads to

. _— T2 —T, ~—

zZ1= o +C2 Aonnzn + w 9 _dzn(da] —22)+ 82 . (22)

Consider the Lyapunov function candidate:

Uy Vs, day o2
Vi=—zf +=g' T 0 +=L5°+V,,
1 ) 1 29 2Yd £
where §=0-60 , 6 is the estimate of ¢ ,

r=r’">0, vy>0 are the gain matrix and gain

respectively, and V. is defined in equation (14).
. 2
Note that it has been proved that V¢ = ‘”8“ .

Differentiating ¥, with respect to time ¢ , we
have

. ~ 1A dy, <A 2
Vi=2-60"'0 —%dd el
It can be easily verified that along the solution of (22),

<=4z +o 072, +§7 (1, -T7'9)
1 2,1 2 2
——(z,—&,)" +—8&5 e
S —8) e el

<-{z¢ +clréz‘ 2,44 (1-118)

if we choose

_ 1 A
o1 = +5)Zl — ) A", — W' 0, (23)

T = W—dalzl,

where §; >0 is a control parameter and g is the
estimate of parameters 0.
Note that if v =0y is the actual control and
Zy = 0, é = FT]
it leads to
yi<—Gizf <0.
Step 2. From equations (16), (19) and (21), we have

- ~ Oy A
27=0y+23 —yZ(WT9+82)~d£9—B2, (25)

v, =d 2w
2 — )
W
~ On _
By = oy +d = (AgNyy — Cont) ~ Y(l]zzl (26)
ar\2n

+ Yo (CgAgnnzn + WTé)

Equation (25) describes the behavior of the tracking
error Z2 . To find out the virtual control o, to

stabilize z; , consider the following Lyapunov
function candidate:

1
V2=I/I+EZZZ+V8

Differentiating »> with respect to time ¢ along the
solutions of (22) and (25), we have

Vy< —(;1212 + 2525 + ér(tz - F_lé)

~ ~ 6 A 2
+22(U.2 +C]T921 _B2 —d;(zl‘g) —Y2272&y _“8

’

where T, =7) —y,wz, .
If we select

2
. .0
g =~(Cy +22)zy =] bz + B, +d=HT1,, >0,
4 o6
it follow that

. ) ~ _1A
VaS—Uizt =075 +2yz3+ 4 (1, —T7'6)

Oy
a0
If v3 =0, isthe actual control and

+sz" (FTz —é).

Z3 :0, éerz,
we have
. 2
V<42t —025 <0,
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Step i (3<i<2n—1) In this step, we generalize the
design procedure for any step ;>3 with the
assumption that stabilizing functions 0y, dy,...0;
and tuning functions 7, 7;,...T;; are derived in
previous steps.

It can be showed that the tracking error Z; satisties

- 6(1._ A
z'i:(1i+zi+1—7i(WT9+82)_ lﬁlg_ﬁi’ @7
00
where
g = i1
Yooy
B == "( ot =)+ 00 0465 45 3,)

i~ 6(1,_ -
AV + o L(AgNap — Cany1) - 85?1 YaiZ1-

2n
Consider the Lyapunov function candidate:

1
V.=V, +Ez;7‘+Vg.

Following the same procedure as in previous steps, the

derivate of ¥; with respective to time ¢ along the
solution of equation (27) is rendered as

z +zz +9~T(r-—F_Ié)
i“i+1 i

l

oa. ;_ X
%(rr,- ~6)

+ lezz Zj
by selecting

2
'Y~ aai_
o; =—(; + TI)Z,' —zi +Bi + %l‘rﬁ

) da ;_

where G; >0 isa control parameter and
T =T — Yz,
Obviously, if v;;; =¢; is the actual control and

Ziq =0, QIFTZ-,

we have

lgjzj <0.

Step 2n. Thls is the final step of backstepping
control design where the control input is determined.

Following the same way as done for @; in the

previous steps, the control input can be set as

o0y, _
+ 2}?\ 1 Ft2n

U=0s, = —Zypq t B2n

_C2n22n
(28)

Ezn ! :1 F’Y2nw, Czn > 0.

With control input z in equation (28), parameter

updating laws for d and 6 in equations (24) and

(33) respectively, combined with ©; and 6-T T; in
each step, the resulting close loop system with state

vector [2] 2, "'Zzn]T can be described by

1 ~ e -~
z1==(G +E)Zl +o 0z +ey +3y 0 —dyqd (29)

2
22=—c[ 0z —((, +%2)22 +23
(30)

~dg
(;122-”31“ij2 (W G +¢y),

sm g2 oa

-1 oo;_
,:2—f—érv,-wzj (= éz Ly;w)z;.y

2
Vi 0% 52 31
~ G+ Dz bz + BT Ty G

—y;(w @ +e,) 3<i<2n-1,

Y
n 22}7 2 WZ
a
1+ aggz Ty, W)z, 4 (32)
2

~Yan (wré’~ +&5).

- (§2n + %)22}1

To prove the asymptotic stability of the closed-loop
system represented from equations (29) to (32),
consider the following Lyapunov function candidate:

|
Vow =Vana T3%m Ve

1 Tels dn,
=—sz+lgTr 9 +22 32+ 2nv,.

2 2 2y
Differentiating V5, with respective to time ¢ along

the solutions of (29) to (32), we have
Von —22n1CJZJ +§ (1, - T~ 16’)

2]2

8 -1 A
; g (T, ~6),

where T2 =t1_2322rjwzj and v;=-1 is a new
constant introduced to keep the consistency in
expression.

Letting

=T, (33)

it follows that
Vzn— EznlC]Z <0

From equation (33), it can be concluded that %2, is
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non-increasing. Hence, z, §, 4 and & are all
bounded. From their boundedness, it can be proved
that other signals in the control loop are also bounded.
Based on LaSalle-Yoshizawa theorem [9], z—0

when ¢ — oo . Obviously y; =0 when ;— w.

The above results can be summarized in the
following theorem.

Theorem 1: For the chained multiple mass-spring-
damper system (6) and the re-constructed dynamic
model represented by equations (15) to (17), the regu-
lation of the position y; is achieved (3, >0 when

t — o0 ) under the control law (28) and the parameter
adaptation laws (24) and (33).

Remark 3: The CMMSD system considered is
assumed to be free of external disturbances. To keep
the robustness of the controlled system under the
external  disturbances, various  robustification
approaches can be wused, such as dead-zone
modification or §-modification [10,14], though the
resulting controllers tend to be more complicated. As
pointed out in [10] and [11], the adaptive controller
developed with backstepping methods shows much
higher degree of robustness than that of conventional
adaptive controller even in the absence of
robustification tools.

3.2. Model Reference Adaptive Qutput Feedback Con-
trol
In this section, adaptive output feedback control is
to be designed based on MRAC approach. To begin
with, the system transfer function (5) is re-written us-
ing the differential operator p =d/dt such that

d2n

Ap

N = u, 34)

where
2 2n-1 i
Ap :p n +ZJZO azn’jpj.
Assume that the desired behavior of the controlled
system is specified by the following reference model:

B
m = A: Ues (35)
— _ 2n 2n-1 j .
where B, =d, , A4,=p~ +Xiya, ;p’, u. is

the command input and 3y, is the desired output.
Note that 4,, is a stable monic polynomial with the

same order as that of Ap and it should be selected

such that when u. =0, y, =0.

The task now is to find a control input u for sys-
tem (34) such that the controlled system follows the
reference model (35). Following the pole placements
procedure in [15], this objective can be achieved by
making the control # to meet the equations:

Pu=Ru. - Fyy,
P =55, 10" sy, opP s p+ sy,
B =t 0" 1, 07"+ tp g, e
P=p""  n, 2P A Rp .
where P, and F are polynomials and their coeffi-
and # (i=0.1,...2n—1) can be ob-
tained from the following equations:

ApPr +d2nps :PoAm’ (BT

cients s;,

£ =F,B,/d,, (38)

with P, being a pre-defined observer polynomial

2n-2

1)0 szn_l +02n*2S +...+ 0]S+00 with 0; be-

ing its coefficients. Equation (37) is normally called
Diophantine equation.
From equations (37) and (38), the coefficients of £, ,
P, and F are obtained:
¥4 =04 +Qpp 1 — 215

2n-1

ri=0i+ Z (Ojam’zn”_j —rjazn_H'_j) (l = 0,...2]’1—'2),
j=i+l

i
Si:z(ojam,i—j —ra;_;)dy, (i=0,..2n-1),
j=0

t=d,oldy, (i=0,.2n-2).
Obviously #, s; and ¢ are the functions of ay,;,
Api> 0; and d,,. In the following, we will develop

the parameter adaptation laws to estimate these pa-
rameters.

From equations (34), (35) and (36), the error between
the output of the controlled loop and the reference
model is obtained:

d
X (Bu+ Py - Fu) . (39)

o‘“'m

€=M ~"Vim =

To express this error in a linear-in-parameter (LIP)
form , re-arrange equation (39) such that

j P P
e:dZn(Lu+r—2‘u+—lel —_ruc)9
it fa P Py

where P, =RP,, K =4, and P,=F,. Obviously
P.— P, is a polynomial of p with coefficients be-
ing r,=r-0; (i=0,1,---,2n-1).

Define a vector consisting of coefficients of the poly-
nomials of P, — P, P, and F such that

T
Of = [7‘2”;2 .. .I"O s2n’1 .. .SO t2n71 . ..to]
and another vector consisting of filtered input, output
and the command inputs such that
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With ¢ and 6 r defined above, the error ¢ is ex-

pressed as
1 T
ezdzn(FunL(p 0,). (40)
1

Letting the output feedback control law be
u=~§7(Ry) (41)

and substituting it in the equation (40), we have

e=g+d,,n,
e=dy,0" 6, (42)
1

T ~
= ——1 - y
n A © Gy
where §,=0,-¢g, and g, isthe estimate of 6.
It is obvious that ¢ is linear in the parameters. The
adaptation law for 0 is then obtained through gradi-
ent approach [15]:
éf = Yf(pg ’
where y,>0 is the adaptation gain. Note that the

unknown parameter d,,, isabsorbedin Y/ .
The calculation of { requires unknown parameter
dy, - To estimate it as well as 6., the augmented

error ¢ is replaced by prediction error
1
” T ~
€p=€—dy, (@ gt — 1)
p n f P1

and the estimates of 0, and d,, are thus given by

éf:’Yf¢8p’ (43)

A T A 1
dr, =V (@ Hf+Flu)8p' (44)

Given u, =0 and following the same lengthy proce-

dure in proving the stability of general MRAC con-
trollers [15,16], it can be showed that under the con-
troller (41) and parameter adaptation laws (43) and

44), y; — »,, asymptotically and the signals in the
controlled system are all bounded. As y,, =0
when u, =0, thus we can conclude y, -0 asymp-
totically. The regulation of the output y; with u is

thus achieved.
The above results are summarized in the following
theorem.

Theorem 2: For the chained mass-spring-damper
system with transfer function (34), the position y; is

controlled such that y; -0 when ¢— o under the

control law (41) and the parameter adaptation laws
(43) and (44).

Remark 4: For adaptive feedback control with
backstepping, MRAC based approach needs more
control parameters such as those of the reference
model, observer polynomials, filters and the adapta-
tion gains. Several filters are also needed to filter the
outputs, command inputs and the control inputs re-
spectively.
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Remark 5: Observer polynomial £, should be se-

lected such that it is stable with faster dynamic re-
sponse than that of 4,,.

4. SIMULATION STUDY

Consider a system with three mass-spring-damper
units. The system parameters are selected as

mo=my=my=2kg, b =by=b =0.8N/ms”' and
ki =k, =40N/m . Based on these system parameters,
that 6 =[200 1.0 80 64

1212 480 0] and d=0.005. As 0 and d are
unknown, their initial estimates are assumed to be

it can be calculated

20% of their true values, that is,
6=[40 0.2 16 13 240 96 0]7 and d=0.0015
respectively.  Assume  initially  y, =¢; =0.02

(0.02m displacement from its equilibrium position)
First, the simulation is done for the adaptive back-

stepping output feedback controller. The input to the
system is obtained by setting n=3 and setting con-

trol parameters ¢ =2, ¢, =3, ¢3=5, ¢4 =4,
¢5=6, cg=7, A=10,12,=50, x3=20, )4=30,
A5=20, Ae=20, I'=25/° and y=20. The sys-
tem responses are shown from Figs. 2 to 4. The con-
trol u is shown in Fig. 5. The estimates for & are
shown in Figs. 3 and 4. d is plotted together with its
value under disturbances in Fig. 10.

It can be seen that positions ¢; (i=1,2,3) ap-
proach to zero in approximately 4 seconds. It is inter-
esting to note that, during the transient period,
g; demonstrates larger oscillations than those of ¢,

and ¢, while that of g, is the minimum. It is un-

derstandable as ¢, is directly affected by the input

u . The control input is in a reasonable range, though
it shows a sharp change to overcome the initial posi-
tion error at the beginning. Under the adaptation laws,
all the parameter estimates become stable around 2.5
seconds, though they do not approximate their true
values.

To test the robustness of the controller under the
bounded external disturbances, a small bounded dis-

turbance A(f) =[8, (1) 85(¢)...85(1)]" is added to the
system dynamics such that

x=A.x+bu+A),
X =¢ X,

where 8;(i=12...6) is defined as
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Fig. 4. Parameter estimates-Part 2 (Solid: @5 ,
dashed: éa , dotted: 57 ).
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Fig. 5. Control input u.

0.15 t<2.5 Sec

0.1 t>2.5 Sec.

The simulation results are plotted from Figs. 6 to 8
and Fig. 10. The control effort is plotted in Fig. 9. It
can be observed that frequent oscillations are super-
imposed with the position signals for a longer time
compared with those when the system is external dis-
turbance free. Though the asymptotic regulation of the
positions are not achieved, the position errors tend to
be bounded within a narrow bound. The parameter
estimates are stabilized. Though it is observed that the
output of the system becomes divergent if the distur-
bances is large, the above simulation results still show
that the controller demonstrates has some degrees of
robustness to some bounded disturbances. For larger
disturbances, robust control approach should be used
for compensations.

The simulation is also done for MRAC adaptive
output feedback controller. The initial states of the sys-
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Fig. 12. Some parameter estimates under the MRAC
adaptive feedback controller (Solid: &1,

dotted: éfz , dashd: g’f3 )

system are the same as those for backstepping
controller. The controller parameters of the controller
are chosen as Y=12 . The initial values of the

parameter estimates 0 s and d>, are set to zeros.

The simulation results are shown from Fig. 11 to Fig. 13.

It can be seen that it takes longer time (almost 50
seconds) for the output to be regulated to zero
compared with that of backstepping control scheme.
The position responses also show bigger oscillations
(especially g3 ) in a longer period. The parameter
estimates are convergent, though they are not close to
their true values. The control input is in a reasonable
range with a magnitude much smaller than that of
backstepping controller, but its oscillation lasts longer.
In the simulation, it is found that the controller is
sensitive to the controller parameters and the initial
values of the estimated parameters. The outputs
becomes divergent once the disturbance A(¢) is

added to the system.

5. CONCLUSION

In this paper, dynamic models and adaptive output
feedback controller for position regulation are
developed for general chained multiple mass spring
damper systems. Based on backstepping and MRAC
adaptive methods, two adaptive output feedback
controllers—recursive and non-recursive respectively,
are developed. They rely on the input and the output
of the system and do not require the exact knowledge
of the parameters and the internal states of the system.
Under the proposed controllers, the output (position)
of the system is regulated to zero. The simulations are
used to verify and compare the effectiveness of the
proposed control approaches.

0.08—-

0.06

0.04

0.02

Input (N}
&
o
N

30
Time {Sec)

Fig. 13. Control input under the MRAC adaptive
feedback controller.

APPENDIX 1:TRANSFER FUNCTION #H,,(s)

The transfer function H,,(s) can be derived step
wise from
d,

Hy(s)=———2 - (i=12...n)
' s+ Zi»lgéaﬁ,jsf ’

(45)

where
dy; =m; ' dyi_s,
ay; ;= a2i—2,j—2+m;]bi(a2i—2,j—l+G(j_2i+1))
+m; ki (ay; o +0(j-2i+2))
—dy 4y am; 'k (ay 4 +0() - 2i+4)),
dy =mi kydy s,
ayy,j = ayg ja+m by, j+o(j-21+1)
+mp (kg Ny +0(j-21+2))
—dyadyyamy Ky (ay g ; +0(j =20 +4))
(1=2,3,...i-1, j=0,12,...71-1),

k k
d) :—1, D0 =—1—’ 1=
ml l’ﬂ] ml
with function o(®) defined as
1 i =0
ow=1 T ¥ (46)
0 if x=0.

This closed-form solution for the coefficients in the
system transfer function (45) is very convenient for
the design of the controllers, adaptive or nonadaptive,
model free or model based. For this reason, we would
like to share it with control communities.
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