• 제목/요약/키워드: force coefficient

검색결과 1,383건 처리시간 0.03초

항력계수에 미치는 호박돌 형상의 영향 (Effects of cobble shape on coefficient of drag force)

  • 박상덕;윤민우;윤영호
    • 한국수자원학회논문집
    • /
    • 제50권6호
    • /
    • pp.419-427
    • /
    • 2017
  • 산지하천 하상에서 흔히 발견되는 호박돌에 작용하는 항력은 하천의 거동과 반응을 예측하는 데 있어서 중요하나 이를 위한 항력계수 연구는 미흡한 실정이다. 본 연구는 호박돌의 항력 실험을 통해서 호박돌 형상과 항력계수의 관계를 분석하였다. 호박돌의 장축과 단축이 흐름방향을 따를 때 항력계수에 미치는 형상계수의 영향을 분석하였다. 항력계수는 장축보다 단축에서 더 크며 호박돌의 등가직경 Reynolds 수가 증가하면 감소하였다. 항력계수와 등가직경 Reynolds 수의 관계에서 결정계수는 단축보다 장축에서 더 크다. 이는 호박돌 형상의 불규칙성에 따른 항력이 축에 따라 변화하기 때문인 것으로 판단된다. 항력분포 변화는 호박돌의 교호진동을 초래하였다. 그 진폭은 $R_{ep}$가 약 12,000에서 급격히 증가하였으며 장축보다 단축에서 더 큰 것으로 나타났다.

전통 민도리식 목구조 화통맞춤의 구조적 특성 (A Structural Characteristics of Hwatong-Connections in Traditional Mindori Type of Wood Structures)

  • 유혜란;권기혁
    • 건축역사연구
    • /
    • 제21권3호
    • /
    • pp.7-28
    • /
    • 2012
  • This study is intended to Mindori structure which is general private houses' structural type among traditional types and is a basic study to confirm structural characteristics of Hwatong connection which is general connection type of column-beam-cross beam. It is aimed to analyze how main member, column, such as size, figure, thickness of Sungetuk and Dugeup affect on structure. Following conclusions are drawn. 1. According to connection conditions, models with big coefficient of friction show stable hysteretic behavior until the angle rotation of member reaches 1/60 and models with small coefficient of friction show dramatical increase in load after the angle rotation of member reaches 1/24. After the angle rotation of member reaches 1/30, separation distance of members is identified physically and cracks are not observed. 2. Specimens with big coefficient of friction show similar inner force regardless of column size(except column size 150mm) and models with small coefficient of friction show increasing inner force as the column size increases. Specimens with same sectional area have similar inner force even though the column figures are different. The thickness of Sungetuk and Dugeup doesn't affect inner force greatly, however, when the thickness of Sungetuk is thin, it could lead to failure of structure as it breaks. 3. The bigger the size of column and the coefficient of friction are, the smaller Bending stiffness depreciation ratio is. 4. Energy Dissipation Efficiency differs from the coefficient of friction. When the coefficient of friction is big, square column shows bigger than round one and it is bigger when the thickness of Sungetuk and Dugeup is thicker. When the coefficient of friction is small, round column shows bigger than square one.

Predictions of non-uniform tip clearance effects on the flow field in an axial compressor

  • Kang, Young-Seok;Kang, Shin-Hyoung
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.743-750
    • /
    • 2008
  • Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution 'seed' results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is involved when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes have an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume analysis of the circumferential momentum leads to well-known Alford's force. Alford's force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford's force at the high flow coefficient. Alford's force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang(2006).

  • PDF

Numerical simulation of flow around two circular cylinders in various arrangements

  • VU, HUY CONG;HWANG, JIN HWAN
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.334-334
    • /
    • 2015
  • The results of flow feature around two circular cylinders in various arrangements are carried out using two-dimensional simulation at Reynolds number of 200. In this work, time-averaged fluid force acting on the upstream and downstream cylinders were calculated for staggered angle ${\alpha}=0{\sim}90^{\circ}$ in the range of L/D = 1.1~5, where ${\alpha}$ is the angle between the free-stream flow and the line connecting the centers of the cylinders, L is centre-to-centre distance and D is cylinder diameter. The dependence of magnitudes and trends of fluid force coefficient on the spacing ratio L/D and ${\alpha}$ are discussed. In all arrangements of two cylinders, tandem arrangement (${\alpha}=0^{\circ}$) is the case produced a minimum drag coefficient for downstream cylinder. Moreover, the locations of separation and stagnation points or pressure coefficient on surface of the cylinder were examined. Acknowledgement: "This research was a part of the project titled 'Development of integrated estuarine management system', funded by the Ministry of Oceans and Fisheries, Korea."

  • PDF

광주도시철도 전동차의 곡선추종성 및 주행안전성 평가 (Estimation of Curving Performance and Running Safety of Gwangju Electric Multiple Unit for City Subway)

  • 함영삼;오택열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.745-750
    • /
    • 2004
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, wheelset manufacturing for test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 80km/h for estimating the curving performance and running safety of Gwangju EMU. As the test results, could confirm the curving performance and running safety of Gwangju EMU from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.8, and lateral force allowance limit and wheel load reduction ratio were enough safe.

  • PDF

PS 긴장재의 마찰손실량에 관한 실험적 연구 (An Experimental Study on The Frictional Loss of Stress in The Prestressing Tendons)

  • 정배근;한경봉;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.417-422
    • /
    • 2000
  • In prestressed concrete structures, determining serviceability and safety it is important to exactly calculate effective prestress force acting on structures. for the determination of effective prestress force, friction loss of the prestressing tendon should be decided exactly, but it is very difficult to measure the exact prestress force on the site and there is no actual field data. Therefore the friction loss coefficient recommended by the specification is not verified. in this paper, the friction loss standard PSC-Beam will be investigated, and is will be found what kind of relationship between the specification and the site. The results from this study can be summarized as follows. For jacking at both ends, actual intial prestress force in the center section of PCS-Beam was about 1.61% larger than theoretical initial prestress force and for hacking at one end, actual initial prestress force was approximate 4.9% lower than theoretical initial prestress force. Thus, for the exact calculation of friction loss, friction coefficient should be modified according to jacking methods.

  • PDF

고무 블록의 마찰 거동 해석 (Analysis of the Frictional Behavior of Rubber Block)

  • 김두만;유현승
    • 한국항공운항학회지
    • /
    • 제14권3호
    • /
    • pp.16-22
    • /
    • 2006
  • The friction and wear of tire determined by frictional behavior of tire tread that translate driving force, cornering force and braking force between automobile and road as a result of frictional behavior of each tread block. The tire tread block is representative case of rubber block doing frictional behavior. In this paper, frictional behavior of rubber block under compressive force and shear force was analytically obtained by using slip starting position parameter instead of friction coefficient which is uncertain to express exact value between rubber and other surfaces yet. And local coefficients of friction were calculated as a function of compressive force, shear force, shear modulus of rubber, shape factor and slip starting position.

  • PDF

아치형 단동하우스의 동간거리가 풍력계수에 미치는 영향 (Effects of the Distance between Houses on the Wind Force Coefficients on the Single-span Arched House)

  • 이현우;이석건
    • 한국농공학회지
    • /
    • 제35권4호
    • /
    • pp.76-85
    • /
    • 1993
  • The purpose of this study was to analyze the wind force distribution on the two single-span arched plastic house depending upon the house spacing and wind direction, which may provide the fundamental criteria for the structural design. In order to specify the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients and the drag force coefficients were estimated from the wind tunnel test data. The results obtained are as follows : 1. At the wind direction of 90$^{\circ}$, there was a typical span interval at which the maximum negative pressure was occured at the edge of the inside walls. 2. In the consideration of wind loads, the wind force coefficients estimated from independent single-span arched plastic house should not be directly applied to the structural design on the double houses separated. 3. The average maximum negative wind force on the inside walls was occured at the wind direction of 90$^{\circ}$, and the variations depending on the span intervals was not significant. 4. The average maximum drag force was occured at the wind direction of 300, and the magnitude of drag force was more significant at the first house. As the distance between two houses was increased, the drag force was slightly increased for every wind direction.

  • PDF

지중 박스구조물의 지진시 거동 해석 (Numerical Analysis for Buried Box Structures during Earthquake)

  • 박성진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.108-115
    • /
    • 2000
  • Numerical analysis of slop stability is presented using seismic displacement, response seismic coefficient, and earthquake response analysis methods. In seismic displacement and response seismic coefficient methods, horizontal static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis Hahinoha-wave is applied, It is found from result that analysis using response seismic coefficient method is much more conservative than that using seismic displacement method Also, analysis result using earthquake response analysis method is somewhat less conservative about 25% when compared with that using seismic displacement method.

  • PDF

마찰기인 접촉 강성을 가지는 2-자유도계 면외 방향 진동 시스템의 선형 안정성 해석 (Linear Stability Analysis of an Out-of-plan Motion of Vibration of a Two Degree-of-freedom with Contact Stiffness)

  • 조용구;신기홍;이현영;오재응;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.259-265
    • /
    • 2005
  • A two-degree-of-freedom out-of-plane model with contact stiffness is presented to describe dynamical interaction between the pad and disc of a disc brake system. It is assumed that the out-of-plane motion of the system depends on the friction force acting along the in-plane direction. Dynamic friction coefficient is modelled as a function of both in-plane relative velocity and out-of-plane normal force. When the friction coefficient depends only on the relative velocity, the contact stiffness has the role of negative stiffness. The results of stability analysis show that the stiffness of both pad and disc is equally important. Complex eigen value analysis is conducted for the case that the friction coefficient is also dependent on the normal force. The results further verify the importance of the stiffness. It has also been found that increasing the gradient of friction coefficient with respect to the normal force makes the system more unstable.