• Title/Summary/Keyword: food mutagen

Search Result 540, Processing Time 0.018 seconds

1-OH-Pyrene and 3-OH-Phenanthrene in Urine Show Good Relationship with their Parent Polycyclic Aromatic Hydrocarbons in Muscle in Dairy Cattle

  • Kang, Hwan-Goo;Jeong, Sang-Hee
    • Toxicological Research
    • /
    • v.27 no.1
    • /
    • pp.15-18
    • /
    • 2011
  • The toxicities of phenanthrene (PH) and pyrene (PY) are less than benzo(a)pyrene (BaP), but both compounds are found in higher concentrations in the air, feed, and food. Most PAHs are metabolized to hydroxylated compounds by the hepatic cytochrome P450 monooxigenases system. Metabolites are excreted into urine and feces. We determined concentrations of PH, PY and BaP in muscle and hydroxylated metabolites, 3-OH-PH, 1-OH-PY, and 3-OH-BaP, respectively, in urine from dairy cattle (n = 24). We also evaluated the relationship between parent compounds in muscle and their metabolites in urine. Concentrations of PH and PY in muscle ranged from 0.7~4.8 ng/g ($1.8{\pm}1.7$) and 0.4~4.1 ng/g ($1.2{\pm}1.2$), respectively. Concentrations of 3-OH-PH and 1-OH-PY in urine ranged from 0.1~5.9 ng/ml ($2.9{\pm}3.7$) and 0.5~3.6 ng/ml ($1.9{\pm}2.3$), respectively. Correlation coefficient for PY concentration in muscle versus 1-OH-PY in urine was 0.657 and for PH concentration in muscle versus 3-OH-PH in urine was 0.579. Coefficient determination for PY and PH concentrations in muscle was 0.886 and for 1-OH-PY and 3-OH-PH in urine was 0.834. This study suggests that 1-OH-PY and 3-OH-PH could be used as biomarkers for PAHs exposure in dairy cattle.

Intravenous Single and Two Week Repeated Dose Toxicity Studies of Rice Cells-derived Recombinant Human Granulocyte-Macrophage Colony Stimulating Factor on Rats

  • Ji, Jung-Eun;Lee, Jung-Min;Choi, Jong-Min;Choi, Young-Hwa;Kim, Seok-Kyun;Ahn, Kyong-Hoon;Lee, Dong-Hoon;Kim, Ha-Hyung;Han, Kyu-Boem;Kim, Dae-Kyong
    • Toxicological Research
    • /
    • v.23 no.4
    • /
    • pp.383-389
    • /
    • 2007
  • Recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) regulates proliferation and differentiation of hematopoietic progenitor cells and modulates function of the mature hematopoietic cells. In the previous study, we reported that hGM-CSF could be produced in transgenic rice cell suspension culture, termed rhGM-CSF. In the present study we examined the single and repeated dose toxicity of rice cells-derived hGM-CSF in SD rats. During single dose toxicity study for 7 days, there were no any toxic effects at any dose of from 10 to $1000{\mu}g/kg$. The lethal dose ($LD_{50}$) was not found in this range. Moreover, repeated dose toxicity study of 14-days period and at the doses of 50 and $200{\mu}g/kg$ (i. v.) of rhGM-CSF did not show any changes in food and water intake. There were also no significant changes in both body and organ weights between the control and the test groups. The hematological and blood biochemical parameters were statistically not different in all the groups. These results suggest that rhGM-CSF has no toxicity in SD rats.

Assessment of General and Cardiac Toxicities of Astemizole in Male Cynomolgus Monkeys: Serum Biochemistry and Action Potential Duration

  • Lee, Jong-Hwa;Kim, Do-Geun;Seo, Joung-Wook;Lee, Hyang-Ae;Oh, Jeong-Hwa;Shin, Ho-Chul;Yoon, Seok-Joo;Kim, Choong-Yong
    • Toxicological Research
    • /
    • v.24 no.4
    • /
    • pp.289-295
    • /
    • 2008
  • Toxicology screening following treatment with astemizole, a histamine receptor antagonist, at oral doses of 0, 10, 30 and 60 mg/kg was carried out in male cynomolgus monkeys (Macaca fascicularis). No dose-related changes in mortality, clinical signs, body weight changes, food consumption, or urine analysis occurred in any animal compared to the vehicle control. However, the high-dose group showed a decrease in BUN and ALP compared to vehicle control group. In addition, the levels of TG, AST, ALP and CK increased. Although astemizole did not produce significant toxicological changes at any dose tested, we predict that it can cause toxicological changes of the liver and heart based on the changes in the serum parameters related to the heart and liver. The Action Potential Duration (APD) was prolonged in the heart of 60 mg/kg treatment group compared to the control group. The APD increase in 60 mg/kg treatment group along the other related changes in toxicological parameters imply that astemizole has major cardiotoxic effects in the cynomolgus monkey. This study is a valuable assessment for predicting the general toxicity and cardiotoxic effects of antihistamine drugs using nonhuman primates.

Subcutaneous Four-Week Repeated Dose Toxicity Studies of Rice Cell-Derived Recombinant Human Granulocyte-Macrophage Colony Stimulating Factor in Rats

  • Ji, Jung-Eun;Lee, Jung-Min;Choi, Jong-Min;Choi, Young-Hwa;Kim, Eun-Kyung;Chu, So-Jung;Kim, Seok-Kyun;Ahn, Kyong-Hoon;Lee, Dong-Hoon;Kim, Ha-Hyung;Han, Kyu-Boem;Kim, Dae-Kyong
    • Toxicological Research
    • /
    • v.24 no.4
    • /
    • pp.315-320
    • /
    • 2008
  • Recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) is a glycoprotein and hematopoietic growth factors that regulates the proliferation of myeloid precursor cells and activates mature granulocytes and macrophages. In a previous study, we reported that hGM-CSF could be produced in transgenic rice cell suspension culture, termed rhGM-CSF. In the present study, we examined the repeated dose toxicity of rhGM-CSF in SD rats. The repeated dose toxicity study was performed at each dose of 50 and 200 ${\mu}g/kg$ subcutaneous administration of rhGM-CSF everyday for 28-days period. The results did not show any changes in food and water intake. There were also no significant changes in both body and organ weights between the control and the tested groups. The hematological and blood biochemical parameters were statistically not different in all groups. These results suggest that rhGM-CSF may show no repeated dose toxicity in SD rats under the conditions.

Evaluation of Genotoxicity of Water and Ethanol Extracts from Rhus verniciflua Stokes(RVS)

  • Kim, Ji-Young;Oh, Se-Wook;Han, Dae-Seok;Lee, Michael
    • Toxicological Research
    • /
    • v.24 no.2
    • /
    • pp.151-159
    • /
    • 2008
  • Rhus verniciflua Stokes(RVS), one of traditional medicinal plants in Asia, was found to have pharmacological activities such as antioxidative and antiapoptotic effects, raising the possibility for the development of a novel class of anti-cancer drugs. Thus, potential genotoxic effects of RVS in three short-term mutagenicity assays were investigated, which included the Ames assay, in vitro Chromosomal aberration test, and the in vivo Micronucleus assay. In Ames test, the addition of RVS water extracts at doses from 313 up to 5000 mg/plate induced an increase more than 2-fold over vehicle control in the number of revertant colonies in TA98 and TA1537 strains for detecting the frame-shift mutagens. The similar increase in reversion frequency was observed after the addition of RVS ethanol extracts. To assess clastogenic effect, in vitro chromosomal aberration test and in vivo micronucleus assay were performed using Chinese hamster lung cells and male ICR mice, respectively. Both water and ethanol extracts from RVS induced significant increases in the number of metaphases with structural aberrations mostly at concentrations showing the cell survival less than 60% as assessed by in vitro CA test. Also, there was a weak but statistically significant increase in number of micronucleated polychromatic erythrocytes(MNPCEs) in mice treated with water extract at 2000 mg/kg while ethanol extracts of RVS at doses of up to 2000 mg/kg did not induce any statistically significant changes in the incidence of MNPCEs. Therefore, our results lead to conclusion that RVS acts as a genotoxic material based on the available in vitro and in vivo results.

Determination of Methoxyfenozide Residues in Water and Soil by Liquid Chromatography: Evaluation of its Environmental Fate Under Laboratory Conditions

  • Choi, Jeong-Heui;Mamun, M.I.R.;Shin, Eun-Ho;Kim, Hee-Kwon;El-Aty, A.M. Abd;Shim, Jae-Han
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.207-212
    • /
    • 2008
  • Pesticide residues play several key roles as environmental and food pollutants and it is crucial to develop a method for the rapid determination of pesticide residues in environments. In this study, a simple, effective, and sensitive method has been developed for the quantitative analysis of methoxyfenozide in water and soil when kept under laboratory conditions. The content of methoxyfenozide in water and soil was analyzed by first purifying the compound through liquid-liquid extraction and partitioning followed by florisil gel filtration. Upon the completion of the purification step the residual levels were monitored through high performance liquid chromatography(HPLC) using a UV absorbance detector. The average recoveries of methoxyfenozide from three replicates spiked at two different concentrations and were ranged from 83.5% to 110.3% and from 98.1% to 102.8% in water and soil, respectively. The limits of detection(LODs) and limits of quantitation(LOQs) were 0.004 vs. 0.012 ppm and 0.008 vs. 0.024 ppm, respectively. The method was successfully applied to evaluate the behavioral fate of a 21% wettable powder(WP) methoxyfenozide throughout the course of 14 days. A first-order model was found to accurately fit the dissipation of methoxyfenozide in water with and a $DT_{50}$ value of 3.03 days was calculated from the fit. This result indicates that methoxyfenozide dissipates rapidly and does not accumulate in water.

Study on the Reproductive and Developmental Toxicity of 3-MCPD (3-MCPD의 생식ㆍ발생독성에 관한 연구)

  • 곽승준;김순준;최요우;이규식;손경희;이이다;채수영;정용현;유일재
    • Toxicological Research
    • /
    • v.20 no.2
    • /
    • pp.131-136
    • /
    • 2004
  • 3-Monochloro-1,2-propanediol(3-MCPD) is a toxic compound, often present in different foods containing acid hydrolyzed(AH) protein, like seasonings and savory food products. The purpose of the present study was to investigate the effects of 3-MCPD on male fertility, sperm and testosterone secretion. In vivo male fertility test was performed for observing the adverse effects of 3-MCPD on the function of male reproductive system and pregnancy outcome. 0.01, 0.05, 0.25, 1 and 5 mg/kg b.w. of 3-MCPD was given daily by gavage to groups of 15 adult male SD rats for 4 weeks. At the end of pre-treatment period, males were mated overnight with normal females. Following morning, males demonstrating successful induction of pregnancy were sacrificed on that day to assess sperm parameters and histopathology of reproductive organs. The resulting pregnant females were sacrificed on day 20 of gestation to evaluate pregnancy outcome. As a result, four-week paternal administration with 3-MCPD resulted in adverse effects on male fertility and pregnancy outcome without remarkable histopathological changes in testes and epididymides; sperm motility, copulation index and fertility index were markedly decreased in the treated group and numbers of live fetuses showed steep dose-response curves. Also, spermatogenesis was investigated in this experiment. However, no effect was observed on production of sperm in testes treated with 3-MCPD for 4 weeks. Hormone assay was performed for observing the effects of 3-MCPD on testosterone and luteinizing hormone (LH) in blood and testes of male SD rats and cultured primary Leydig cell. In result, significant changes of related hormones did not observed by treatment of 3-MCPD. These results indicated that paternal treatment with 3-MCPD induced spermatotoxic effect, which caused an antifertility on male.

Kidney Toxicity Induced by 13 Weeks Exposure to the Fruiting Body of Paecilomyces sinclairii in Rats

  • Jeong, Mi-Hye;Kim, Young-Won;Min, Jeong-Ran;Kwon, Min;Han, Beom-Suk;Kim, Jeong-Gyu;Jeong, Sang-Hee
    • Toxicological Research
    • /
    • v.28 no.3
    • /
    • pp.179-185
    • /
    • 2012
  • Paecilomyces sinclairiis (PS) is known as a functional food or human health supplement. However concerns have been raised about its kidney toxicity. This study was performed to investigate the kidney toxicity of PS by 13 week-oral administration to rats. Blood urea nitrogen (BUN), serum creatinine, and kidney damage biomarkers including beta-2-microglobulin (${\beta}2m$), glutathione S-transferase alpha (GST-${\alpha}$), kidney injury molecule 1 (KIM-1), tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), vascular endothelial growth factor (VEGF), calbindin, clusterin, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL) and osteopontin were measured during or after the treatment of PS. BUN, creatinine and kidney damage biomarkers in serum were not changed by PS. However, kidney cell karyomegaly and tubular hypertrophy were observed dose-dependently with higher severity in males. KIM-1, TIMP-1 and osteopontin in kidney and urine were increased dose dependently in male or at the highest dose in female rats. Increased urinary osteopontin by PS was not recovered at 2 weeks of post-exposure in both genders. Cystatin C in kidney was decreased at all treatment groups but inversely increased in urine. The changes in kidney damage biomarkers were more remarkable in male than female rats. These data indicate that the PS may provoke renal cell damage and glomerular filtration dysfunction in rats with histopathological lesions and change of kidney damage biomarkers in kidney or urine. Kidney and urinary KIM-1 and cystatin C were the most marked indicators, while kidney weight, BUN and creatinine and kidney damage biomarkers in serum were not influenced.

Subacute Oral Toxicity Study of Korean Red Ginseng Extract in Sprague-Dawley Rats

  • Park, Sang-Jin;Lim, Kwang-Hyun;Noh, Jeong-Ho;Jeong, Eun Ju;Kim, Yong-Soon;Han, Byung-Cheol;Lee, Seung-Ho;Moon, Kyoung-Sik
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.285-292
    • /
    • 2013
  • Ginseng is a well-known traditional medicine used in Asian countries for several thousand years, and it is currently applied to medicine, cosmetics, and nutritional supplements due to its many healing and energygiving properties. It is well demonstrated that ginsenosides, the main ingredient of ginseng, produce a variety of pharmacological and therapeutic effects on central nerve system (CNS) disorders, cardiovascular disease, endocrine secretions, aging, and immune function. Korean red ginseng extract is a dietary supplement containing ginsenoside Rb1 and ginsenoside Rg1 extracted from Panax ginseng. While the pharmacokinetics and bioavailability of the extract have been well established, its toxicological properties remain obscure. Thus, four-week oral toxicity studies in rats were conducted to investigate whether Korean red ginseng extract could have a potential toxicity to humans. The test article was administered once daily by oral gavage to four groups of male and female Sprague-Dawley (SD) rats at dose levels of 0, 500, 1,000, and 2,000 mg/kg/day for four weeks. Neither deaths nor clinical symptoms were observed in any group during the experiment. Furthermore, no abnormalities in body weight, food consumption, ophthalmology, urinalysis, hematology, serum biochemistry, gross findings, organ weights, or histopathology were revealed related to the administration of the test article in either sex of any dosed group. Therefore, a target organ was not determined in this study, and the no observed adverse effect level (NOAEL) of Korean red ginseng extract was established to be 2,000 mg/kg/day.

Effects of Korean Red Ginseng Water Extract on Bisphenol A-induced Developmental Toxicity in Rats (랫드에서 비스페놀 A의 발생독성에 대한 고려홍삼 물추출물의 효과)

  • 김종춘;임광현;서정은;위재준;남기열;정문구
    • Toxicological Research
    • /
    • v.17 no.3
    • /
    • pp.225-234
    • /
    • 2001
  • The present study was conducted to investigate the effects of Korean red ginseng water extract (KRGWE) on developmental toxicity caused by the environmental estrogen bisphenol A (BPA) in Sprague-Dawley rats. fifty males successfully mated were randomly assigned to five experimental groups, 1.e., group I (vehicle control), group II (BPA 1000mg/kg), group III (KRGWE 400mg/kg), group IV (BPA 1000mg/kg & KRGWE 200mg/kg), and group V (BPA 1000mg/kg & KRGWE 400mg/kg). The test articles were administered by gavage to mated females from gestational days (GD) 1 through 20 (sperm vaginal lavage=day O). All females were subjected to caesarean section on GD 21 and their fetuses were examined for external, visceral, and skeletal abnormalities. In the group II, significant maternal toxic effects including suppressed body weight, decreased body weight gain during pregnancy, and reduced food consumption were observed in pregnant rats. The minimal developmental toxicity including fetal ossification delay was also found in fetuses. In addition, a tendency for increased pregnancy failure, increased pre-and postimplantation loss, and decreased fetal body weight was observed. However, no fetal morpho-logical abnormalities were seen in surviving fetuses at a dose level of 1000mg BPA/kg. On the other hand, the maternal toxicity and developmental toxicity found in the groups IV and V were comparable to those of the group II. There were no adverse signs of either maternal toxicity or developmental toxicity in the group III. These results showed that administration of BPA at a dose level of 1000mg/kg to pregnant rats resulted in significant maternal toxicity and minimal developmental toxicity, and that no protective effects on BPA-induced maternal toxicity and developmental toxicity were found by concomitant gavage dosing of KRGWE.

  • PDF