DOI QR코드

DOI QR Code

Evaluation of Genotoxicity of Water and Ethanol Extracts from Rhus verniciflua Stokes(RVS)

  • Kim, Ji-Young (Korea Institute of Toxicology, KRICT) ;
  • Oh, Se-Wook (Korea Food Research Institute) ;
  • Han, Dae-Seok (Department of Biology, College of Natural Sciences, University of Incheon) ;
  • Lee, Michael (Department of Biology, College of Natural Sciences, University of Incheon)
  • Published : 2008.06.01

Abstract

Rhus verniciflua Stokes(RVS), one of traditional medicinal plants in Asia, was found to have pharmacological activities such as antioxidative and antiapoptotic effects, raising the possibility for the development of a novel class of anti-cancer drugs. Thus, potential genotoxic effects of RVS in three short-term mutagenicity assays were investigated, which included the Ames assay, in vitro Chromosomal aberration test, and the in vivo Micronucleus assay. In Ames test, the addition of RVS water extracts at doses from 313 up to 5000 mg/plate induced an increase more than 2-fold over vehicle control in the number of revertant colonies in TA98 and TA1537 strains for detecting the frame-shift mutagens. The similar increase in reversion frequency was observed after the addition of RVS ethanol extracts. To assess clastogenic effect, in vitro chromosomal aberration test and in vivo micronucleus assay were performed using Chinese hamster lung cells and male ICR mice, respectively. Both water and ethanol extracts from RVS induced significant increases in the number of metaphases with structural aberrations mostly at concentrations showing the cell survival less than 60% as assessed by in vitro CA test. Also, there was a weak but statistically significant increase in number of micronucleated polychromatic erythrocytes(MNPCEs) in mice treated with water extract at 2000 mg/kg while ethanol extracts of RVS at doses of up to 2000 mg/kg did not induce any statistically significant changes in the incidence of MNPCEs. Therefore, our results lead to conclusion that RVS acts as a genotoxic material based on the available in vitro and in vivo results.

Keywords

References

  1. Choi, J., Yoon, B.J., Han, Y.N., Lee, K.T., Ha, J., Jung, H.J. and Park, H.J. (2003). Antirheumatoid arthritis effect of Rhus verniciflua and of the active component, sulfuretin. Planta Med., 69, 899-904 https://doi.org/10.1055/s-2003-45097
  2. Dean, B.J. and Danford, N. (1984). Assays for the detection of chemically-induced chromosome damage in cultured mammalian cells in Mutagenicity testing - a practical approach (S. Venitt and J.M. Parry, Eds.). IRL Press Limited, Oxford. UK, pp. 187-232
  3. Fan, P. and Lou, H. (2004). Effects of polyphenols from grape seeds on oxidative damage to cellular DNA. Mol. Cell. Biochem., 267, 67-74 https://doi.org/10.1023/B:MCBI.0000049366.75461.00
  4. Galloway, S.M. (2000). Cytotoxicity and chromosome aberrations in vitro: Experience in industry and the case for an upper limit on toxicity in the aberration assay. Environ. Mol. Mutagen., 35, 191-201 https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<191::AID-EM6>3.0.CO;2-4
  5. Hayashi, M., MacGregor, J.T. and Gatehouse, D.G. (2000). In vivo rodent erythrocyte micronucleus assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity testing and automated scoring. Environ. Mol. Mutagen., 35, 234-252 https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<234::AID-EM10>3.0.CO;2-L
  6. Heddle, J.A., Stuart, E. and Salamone, M.F. (1984). The bone marrow micronucleus test in Handbook of mutagenicity test procedures, 2nd Edition (B.J. Kilbey, M. Legator, W. Nichols and C. Rabel, Eds.). Elsevier Science Publishers BV, pp. 441-457
  7. Henderson, L., Cole, R., Cole, J., Cole, H., Aghamohammdi, Z. and Regan, T. (1984). Sister-chromatid exchange and micronucleus induction as indicators of genetic damage in maternal and foetal cells. Mutat. Res., 126, 47-52 https://doi.org/10.1016/0027-5107(84)90168-4
  8. Hong, D.H., Han, S.B., Lee, C.W., Park, S.H., Jeon, Y.J., Kim, M.J., Kwak, S.S. and Kim, H.M. (1999). Cytotoxicity of urushiols isolated from sap of Korean lacquer tree (Rhus vernicifera Stokes). Arch. Pharm. Res., 22, 638-641 https://doi.org/10.1007/BF02975339
  9. Hong, M.-Y., Kim, J.-Y., Lee, Y.-M. and Lee, M. (2005). Assessment of sensitivity of photo-chromosomal assay in the prediction of photo-carcinogenicity. J. Toxicol. Pub. Health, 21, 99-105
  10. ICH Harmonized Tripartite Guideline (1997). A Standard Battery for Genotoxicity Testing of Pharmaceuticals, S2B
  11. Ishidate, M.J., Sofuni, T. and Yoshikawa, K. (1981). Chromosomal aberration tests in vitro as a primary screening tool for environmental mutagens and/or carcinogens. GANN Monograph on Cancer Res., 27, 95-107
  12. Jang, H.S., Kook, S.H., Son, Y.O., Kim, J.G., Jeon, Y.M., Jang, Y.S., Choi, K.C., Kim, J., Han, S.K., Lee, K.Y., Park, B.K., Cho, N.P. and Lee, J.C. (2005). Flavonoids purified from Rhus verniciflua Stokes actively inhibit cell growth and induce apoptosis in human osteosarcoma cells. Biochim. Biophys. Acta, 1726, 309-316 https://doi.org/10.1016/j.bbagen.2005.08.010
  13. Johnson, M.K. and Loo, G. (2000). Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat. Res., 459, 211-218 https://doi.org/10.1016/S0921-8777(99)00074-9
  14. Jung, N.C. (1998). Biological activity of urushiol and flavonoids from Lac tree (Rhus verniciflua Stokes), PhD thesis, Chonnam National University, Kwang-ju, South Korea
  15. Kim, J.H., Kim, H.-P., Jung, C.-H., Hong, M.H., Hong, M.-C., Bae, H.-S., Lee, S.-D., Park, S.-Y., Park, J.-H. and Ko, S.- G. (2006). Inhibition of cell cycle progression via $p27^{Kp1}$ upregulation and apoptosis induction by an ethanol extract of Rhus verniciflua Stokes in AGS gastric cancer cells. Int. J. Mol. Med., 18, 201-208
  16. Kwon, J., Hong, M.-Y., Koh, W.S., Chung, M.-K. and Lee, M. (2002). Computerized Image analysis of micronucleated reticulocytes in mouse bone marrow. J. Toxicol. Pub. Health, 18, 369-374
  17. Kim, T.J. (1996). Korea resource plant. Vol. II. Seoul University Press, Seoul, Korea, pp. 292-297
  18. Krishna, G. and Hayashi, M. (2000). In vivo rodent micronucleus assay: protocol, conduct and data interpretation. Mutat. Res., 455, 155-166 https://doi.org/10.1016/S0027-5107(00)00117-2
  19. Lee, J.C., Lim, K.T. and Jang, Y.S. (2002). Identification of Rhus verniciflua Stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Biochim. Biophys. Acta, 1570, 181-191 https://doi.org/10.1016/S0304-4165(02)00196-4
  20. Lim, K.T., Hu, C. and Kitt, D.D. (2001). Antioxidant activity of a Rhus verniciflua Stokes ethanol extract. Food Chem. Toxicol., 39, 229-237 https://doi.org/10.1016/S0278-6915(00)00135-6
  21. Lovell, D.P., Anderson, D., Albanese, R., Amphlett, G.E., Clare, G., Ferguson, R., Richold, M., Papworth, D.G. and Savage, J.R.K. (1989). Statistical analysis on in vivo cytogenetic assays in Statistical evaluation of mutagenicity test data (D.J. Kirkland, Ed.). Cambridge University Press, Cambridge, U.K., pp. 184-232
  22. MacGregor, J.T. and Jurd, L. (1978). Mutagenicity of plant flavonoids: structural requirements for mutagenic activity in Salmonella typhimurium. Mutat. Res., 54, 297-309 https://doi.org/10.1016/0165-1161(78)90020-1
  23. Maron, D.M. and Ames, B.N. (1983). Revised methods for the Salmonella mutagenicity test. Mutat. Res., 113, 173-215
  24. Miller, W.C., Thielman, N.M., Swai, N., Cegielski, J.P., Shao, J., Ting, D., Mlalasi, J., Manyenga, D. and Lallinger, G.J. (1996). Delayed-type hypersensitivity testing in Tanzanian adults with HIV infection. JAIDS-J ACQ IMM DEF, 12, 303-308 https://doi.org/10.1097/00042560-199607000-00012
  25. Muller, L. and Sofuni, T. (2000). Appropriate levels of cytotoxicity for genotoxicity tests using mammalian cells in vitro. Environ. Mol. Mutagen., 35, 202-205 https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<202::AID-EM7>3.0.CO;2-Q
  26. Na, C.-S., Choi, B.-R., Choo, D.-W., Choi, W.-I., Kim, J.-B., Kim, H.-C., Park, Y.I. and Dong, M.-S. (2005) Effect of flavoinoid fractions extracted from Rhus veriniciflua Stokes on the reproductive parameters in SD male rats. J. Toxicol. Pub. Health, 21, 309-318
  27. Park, K.Y., Jung, G.O., Lee, K.T., Choi, J., Choi, M.Y., Kim, G.T., Jung, H.J. and Park, H.J. (2004). Antimutagenic activity of flavonoids from the heartwood of Rhus verniciflua. J. Ethnopharmacol., 90, 73-79 https://doi.org/10.1016/j.jep.2003.09.043
  28. Richardson, C., Williams, D.A., Allen, J.A., Amphlett, G., Chanter, D.O. and Phillips, B. (1989). Analysis of data from in vitro cytogenetics assays in Statistical evaluation of mutagenicity test data (D.J. Kirkland, Ed.). Cambridge University Press, Cambridge, U.K. pp. 141-154
  29. Salamone, M.F. and Heddle, J.A. (1983). The bone marrow micronucleus assay: rationale for a revised protocol in Chemical Mutagens: principles and methods for their detection, Vol. 8 (F.J. de Serres, Ed.). Plenum Press, New York, pp. 111-149
  30. Son, Y.O., Lee, K.Y., Lee, J.C., Jang, H.S., Kim, J.G., Jeon, Y.M. and Jang, Y.S. (2005). Selective antiproliferative and apoptotic effects of flavonoids purified from Rhus verniciflua Stokes on normal versus transformed hepatic cell lines. Toxicol. Lett., 155, 115-125 https://doi.org/10.1016/j.toxlet.2004.09.003
  31. Sung, B., Pandey, M.K. and Aggarwal, B.B. (2007). Fisetin, an inhibitor of cyclin-dependent kinase 6, down-Regulates NF-$\kappa$B-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK- 1 and RIP regulated $1{\kappa}B-{\alpha}$ kinase activation. Mol. Pharmacol., 71, 1703-1714 https://doi.org/10.1124/mol.107.034512
  32. The Collaborative Study Group for the Micronucleus Test (1986). Sex difference in the micronucleus test. Mutat. Res., 172, 151-163 https://doi.org/10.1016/0165-1218(86)90071-6
  33. Tinwell, H. and Ashby, J. (1989). Comparison of acridine orange and Giemsa stains in several mouse bone marrow micronucleus assay - including a triple dose study. Mutagenesis, 4, 476-481 https://doi.org/10.1093/mutage/4.6.476
  34. Yang, E.B., Zhang, K., Cheng, L.Y. and Mack, P. (1998). Butein, a specific protein tyrosine kinase inhibitor. Biochem. Biophys. Res. Commun., 245, 435-438 https://doi.org/10.1006/bbrc.1998.8452