• Title/Summary/Keyword: food components

Search Result 3,816, Processing Time 0.024 seconds

Changes volatile flavor components of Korean Agrimonia Japonica by cooking (조리에 따른 한국산 짚신나물(Agrimonia Japonica)의 휘발성 풍미 성분의 변화)

  • 이혜정;이경희;구성자
    • Korean journal of food and cookery science
    • /
    • v.11 no.2
    • /
    • pp.122-125
    • /
    • 1995
  • An attempt was made to determine the effect of the volatile components of edible wild grass by cooking. We collect the volatile components of Agrimonia Japonica by dynamic\ulcorner head space method. Samples were analyzed by gas chromatography-mass spectrometry(GC-MS). Thirty-six components, including 16 hydrocarbons, 7 alcohols, 4 esters, 7 benzoid compounds, 1 aldehyde and 1 ketone were confirmed in raw samples. Also 6 hydrocarbons identified in cooked sample. Alpha-pinene and 3-he-xane-ol were regarded as the most abundant components in raw sample. By heating of Japonica, most of the volatile compounds were disappeared, but alpha-pinene was remained abundantly.

  • PDF

Volatile Flavor Components of Korean Sancho Fruit and Tree(Zanthoxylum schinfolium) (한국산 산초열매와 나무의 휘발성 향기성분)

  • 이종원
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.5
    • /
    • pp.493-498
    • /
    • 1998
  • An attempt was in this to analyzer volatile flavor components of sancho(Zanthoxylum schinfolium). Essential oils in sancho tree and fruit isolated by a simulataneous steam distillation (SDE) methods using n-pentane/diethyl ether as solvent. A total of 57 and 44 components were identified by gas chromatography(GC) and combined gas chromatography spectrometry (GC-MS), respectively. Granyl acetate(29.23%) geraniol (6.80%, p-isopropyl-2-chclohexenone(5.53%), phellandral (4.10%) in sancho fruit and 4, 6, 6-trimethyl-bicyclo(7.47%), T-carvelo(4.60%, ${\alpha}$-cypernone(3.58%) in sancho tree were found to be major volatile flavor. 22 compnents including myrcene, limonene, 1, 8-cinol in sancho fruit and 10 components including 4-(1-methylethyl)-cyclohexanol, methyl undecyl ketone in sancho tree were identified. The contents of unsaturated fatty acids of palmitic acid(24.34%), myristic acid(3,68%) in sancho tree was higher than that of the sancho fruit.

  • PDF

Identification of Volatile Flavor Components of Chinese chive and Baek-Seok Chie (중국 부추와 백석 부추의 휘발성 풍미 성분의 동정)

  • 이혜정;박희옥
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.4
    • /
    • pp.539-543
    • /
    • 1997
  • This study was carried out to investigate the Chinese and Baek-Seok chive. We collect the volatile components of Chinese and Baek-Seok chive by dynamic head space method. Chinese chive was analyzed by Gas chromatography-Mass Spectrometry(GC-MS). 28 components including 20 sulfides, 5 alcohols, 1 benzene and 2 aldehydes compounds were identified in samples, Also Baek-Seok chive was analyzed by GC-MS. 32 components including 19 sulfides, 10 alcohols, 2 benzonoides and 1 aldehyde compounds were confirmed.

  • PDF

Analysis of the Volatile Components in Red Bean (Vigna angularis)

  • Kim, Joo-Shin;Chung, Hau-Yin
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.120-126
    • /
    • 2007
  • Volatile components in red bean (Vigna angularis) were investigated. Extracts prepared by simultaneous steam distillation and solvent extraction were analyzed by gas chromatography/mass spectrometry. One hundred and forty-two components including alkanes/alkenes (17), aromatics (5), furans (15), miscellaneous compounds (2), other nitrogen-containing compounds (11), aldehydes (11), naphthalenes (11), alcohols (34), ketones (23), sulfur-containing compounds (5) and esters (8) were identified. Some of these components, e.g. hexanal, were known to contribute to the "beany" odor in other beans. Due to the presence of such odor, red beans may not be acceptable to some consumers.

Volatile Components of Lycium chinensis Miller (구기자(Lycium chinensis Miller)의 휘발성 성분)

  • 박원종;복진영;백순옥;한상빈;주현균
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 1997
  • The volatile components of Lycium chinensis Miller were isolated by simultaneous steam distillation-extraction(SDE) method and analyzed by combined GC and GC-MS. Fifty-four volatile components, including 12 alcolhols 12 esters, 7 aldehydes, 6 acids, 5 ydrocarbons, 8 ketones, 1 furan and 3 pyrazines were confirmed in the fruit of Lycium chinensis Miller. The major components were hexadecanoic acid ethyl ester, 1-octadecanone, tetrapyrazine, 2-furancarboxaldehyde and ethyl linoleate.

  • PDF

Comparison of Volatile Aroma Components from Saussurea lappa C.B. Clarke Root Oils

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.128-133
    • /
    • 2008
  • The volatile flavor components were isolated from the roots of Saussurea lappa C.B. Clarke produced in Korea and China by the hydro distillation, and were analyzed by gas chromatography-mass spectrometry (GC/MS). 63 aroma compounds representing 87.47% of the total peak area were tentatively identified, including 13 alcohols (22.56%), 26 hydrocarbons (21.78%), 4 aldehydes (21.24%), 11 ketones (18.04%), 1 oxide (0.52%), 3 esters (0.16%), 1 carboxylic acid (0.02%) and 4 miscellaneous components (3.15%). 46 volatile flavor components of imported S. lappa C.B. Clarke constituted 65.69% of the total volatile composition were tentatively characterized, consisting of 1 aldehyde (23.32%), 24 hydrocarbons (16.69%), 10 ketones (15.84%), 7 alcohols (8.92%), 1 oxide (0.83%), 2 esters (0.07%) and 1 acid (0.02%). The predominant components of both essential oils were (7Z,10Z,13Z)-7,10,13-hexadecatrienal and dehydrocostuslactone.

Changes in Lipid Components of Oleoresin Red Pepper during Cooking (고추 Oleoresin 의 가열조리중 지질성분의 변화)

  • 최옥수;하봉석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.238-243
    • /
    • 1994
  • Changes of lipid components in modified oleoresin during cooking at high temperature were investigated. In preparation of the modified oleoresin, dried red pepper was milled to 100 mesh of size particle and extracted oily compounds by reduced pressure steam distillation . The rest part was reextracted and concentrated and concentrated. The extracts were combined. The same volume of water and 4% of polyglycerol condensed ricinoleate (PGDR) were added to the combined extract, and emulsified to make oleresin red pepper. Non-polar lipid components were quantified 3 times higher in the oleoresin than polar lipid components . The components of non-polar lipd was mainly triglyceride comprising 75.8%. The level of phosphatidyl choline and phosphatidyl ethanolamine were 38.6and 26.1%, respectively. linoleic acid was distinctively abundant (63.1%) and followed by palmitic acid, oleic acid, linolenic acid and stearic acid in the oleoresin. Oxidation of lipid at high temperature was principally affected by temperature rather than oxygen existence . With the result of oxidation , palmitic acid and myristic acid increased, however, oleic acid, linoleic acid, and linolenic acid decreased.

  • PDF

Trends in Development and Research of Natural Food Additives (천연 식품 첨가물 개발 및 연구동향)

  • 이형주
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 1994.06a
    • /
    • pp.17-22
    • /
    • 1994
  • Food additives are minor components which are used to enhance nutritive or sensory values, and to improve shelf life of foods. In foods, natural additives are preferred over artificial or synthetic materials because of concern on food safety. Many biotechnological techniques have been applied to the production of food additives since the biotechnology has been utilized to prodyce many flavor components such as glutamate, 5'-nucleotides, esters, 2,3-bytadione, pyrazines, terpenes, and lactones. Natural flavors, fragrances, sweetners, and colorants can be produced by plant cell culture. Many lactic acid bacteria produce bacteriocins such as nisin or diplococcin. These bacteriocins are used as safe preservatives in foods and many researches on the improvenment of bacteriocin productivity by genetic engineering are in progress.

  • PDF

Changes in Microorganisms, Enzyme Activities and Taste Components of Kochujang Added with Maesil Extract during Fermentation

  • Lee, Min-Ji;Seog, Eun-Ju;Lee, Jun-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.1
    • /
    • pp.51-57
    • /
    • 2007
  • The effects of maesil extract addition on the palatability and quality of kochujang, a traditional Korean condiment, were investigated in terms of the microbial characteristics, enzyme activities, and taste components during 100 days of fermentation. Viable cell counts of bacteria and yeast in maesil extract-added kochujang (maesil kochujang) were increased in proportion to added maesil extract from 1 to 5% during fermentation, up to 80 and 20 days, respectively and maintained $5.0{\sim}14.5{\times}10^6$ CFU/g. Activities of α-amylase, $\beta$-amylase, and protease were also increased in proportion to added maesil extract up to 20, 20, and 60 days, respectively and were higher than those of control during the aging process. The major organic acids in maesil kochujang were citric and malic acid. Composition and content of free sugar were not changed remarkably in general by the addition of maesil extract except maltose. The major free sugars of maesil kochujang were in the order of glucose>sucrose>maltose, and glucose content decreased significantly as the ratio of maesil extract increased, while maltose content increased significantly (p<0.05).