• Title/Summary/Keyword: follicle cells

Search Result 341, Processing Time 0.028 seconds

Aging of hair follicle stem cells and their niches

  • Hansaem Jang;Yemin Jo;Jung Hyun Lee;Sekyu Choi
    • BMB Reports
    • /
    • v.56 no.1
    • /
    • pp.2-9
    • /
    • 2023
  • Hair follicles in the skin undergo cyclic rounds of regeneration, degeneration, and rest throughout life. Stem cells residing in hair follicles play a pivotal role in maintaining tissue homeostasis and hair growth cycles. Research on hair follicle aging and age-related hair loss has demonstrated that a decline in hair follicle stem cell (HFSC) activity with aging can decrease the regeneration capacity of hair follicles. This review summarizes our understanding of how age-associated HFSC intrinsic and extrinsic mechanisms can induce HFSC aging and hair loss. In addition, we discuss approaches developed to attenuate ageassociated changes in HFSCs and their niches, thereby promoting hair regrowth.

Histochemical Study of the Atresia of Ovarian Follicles (생쥐, 쥐 및 돼지의 난소내 난포의 폐쇄에 관한 조직화학적 연구)

  • 김종흡;김성인;윤용달;김문규
    • Korean Journal of Animal Reproduction
    • /
    • v.16 no.2
    • /
    • pp.165-173
    • /
    • 1992
  • In order to study the mechanism of follicle growth and maturation, and also to supplement the criteria identifying the follicle state of normal of atretic, the histochemical investigation on the ovarian follicles according to the ovarian cycle of mouse, rat and pig has been done. The intercellular space of granulosa cells, especailly Call-Exner body, and follicular fluid in the antrum showed positive to PAS, and blue stain by trichrome dye. The resutls suggest that the mucous polysaccharide was synthesized by the granulosa cells, and secreted into the antrum through Call-Exner body so as to be the components of the follicular fluid as the follicles proceeded to growth and maturation. The further the follicles proceeded to atresia the more densely their theca externa were stained blue by follicles proceeded to atresia the more densely their theca externa were stained blue by trichrome dye, and the more densely the granulosa cells were stained red by oil red 0 dye. Therefore, these staining methods can be applied to the criteria identifying the follicle atresia.

  • PDF

The C-terminal Phosphorylation Sites of eel Follicle-Stimulating Hormone Receptor are Important Role in the Signal Transduction

  • Kim, Jeong-Min;Byambaragchaa, Munkhzaya;Kang, Myung-Hwa;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.22 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • The large extracellular domain of glycoprotein hormone receptors is a unique feature within the G protein-coupled receptors (GPCRs) family. After interaction with the hormone, the receptor becomes coupled to Gs, which, in turn stimulates adenylyl cyclase and the production of cAMP. Potential phosphorylation sites exist in the C-terminal region of GPCRs. The experiments described herein represent attempts to determine the functions of the eel follicle-stimulating hormone receptor (eelFSHR). We constructed a mutant of eelFSHR, in which the C-terminal cytoplasmic tail was truncated at residue 614 (eelFSHR-t614). The eelFSHR-t614 lacked all potential phosphorylation sites present in the C-terminal region of eelFSHR. In order to obtain the eelFSHR ligand, we produced recombinant follicle-stimulating hormone ($rec-eelFSH{\beta}/{\alpha}$) in the CHO-suspension cells. The expression level was 2-3 times higher than that of the transient expression of eelFSH in attached CHO-K1 cells. The molecular weight of the $rec-eelFSH{\beta}/{\alpha}$ protein was identified to be approximately 34 kDa. The cells expressing eelFSHR-t614 showed an increase in agonist-induced cAMP responsiveness. The maximal cAMP responses of cells expressing eelFSHR-t614 were lower than those of cells expressing eelFSHR-wild type (eelFSHR-WT). The $EC_{50}$ following C-terminal deletion in CHO-K1 cells was approximately 60.4% of that of eelFSHR-WT. The maximal response in eelFSHR-t614 cells was also drastically lower than that of eelFSHR-WT. We also found similar results in PathHunter Parental cells expressing ${\beta}$-arrestin. Thus, these data provide evidence that the truncation of the C-terminal cytoplasmic tail phosphorylation sites in the eelFSHR greatly decreased cAMP responsiveness and maximal response in both CHO-K1 cells and Path-Hunter Parental cells expressing ${\beta}$-arrestin.

Oogenesis and Oocyte Degeneration in Coecella chinensis (Bivalvia: Mesodesmatidae)

  • Kim, Sung Han;Chung, Ee-Yung
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.333-342
    • /
    • 2014
  • Ultrastructural studies of oogenesis in oocytes, oocyte degeneration associated with the follicle cells in female Coecella chinensis were investigated for clams collected from Namhae, Geongsangnam-do, Korea. In this study, vitellogenesis during oogenesis in the oocytes occured by way of endogenous autosynthesis and exogenous heterosynthesis. Of two processes of vitellogenesis during oogenesis, the process of endogenous autosynthesis involved the combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum. whereas the process of exogenous heterosynthesis involved endocytotic incorporation of extraovarian precursors at the basal region of the oolema of the early vitellogenic oocytes prior to the formation of the vitelline coat. It is assumed that the follicle cells were involved in the development of previtellogenic and early vitellogenic oocytes and appear to play an integral role in vitellogenesis in the early and late vitellogenic oocytes by endocytosis of yolk precursors, and also they were involved in oocyte degeneration by assimilating products originating from the degenerated oocytes, thus allowed the transfer of york precursors needed for vitellogenesis (through phagocytosis by phagolysosomes after spawning). Follicle cells presumably have a lysosomal system for breakdown products of oocyte degeneration. and for reabsorption of various phagosomes (phagolysosomes) in the cytoplasm for nutrient storage during the period of oocyte degeneration.

Expression of Glucosamine-6-Phosphate Deaminase (GNPDA) in Mouse Ovary (생쥐 난소에서 Glucosamine-6-Phosphate Deaminase (GNPDA)의 발현)

  • Gye, Myung-Chan
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.181-186
    • /
    • 2000
  • The expression of glucosamine-6-phosphate deaminase (GNPDA) was examined in mouse ovary from neonate to aduit. In western blot, band of Mr. 31 kDa antigen sharply increased 2 weeks after birth onward. In irmmunostaining of the adult ovary, GNPDA expression was constitutive in the theca and interstitial cells. However, expression in the granulosa cells was different according to folliculogenesis. Cytoplasm of the oocyte of some primary follicle showed positive signal but not in the antral follicle. Granulosa cells of antral follicles showed no visible sign of GNPDA expression. In the corpora lutea, the signal intensity in granulosaluteal cells increased according to luteal development and became the highest in the luteolytic phase. In summary, the differential expression of GNPDA was found in follicle cells according to folliculogenesis. It suggests that GNPDA might be involved in tissue remodeling in mouse ovary.

  • PDF

Regulatory T Cells in B Cell Follicles

  • Chang, Jae-Hoon;Chung, Yeonseok
    • IMMUNE NETWORK
    • /
    • v.14 no.5
    • /
    • pp.227-236
    • /
    • 2014
  • Understanding germinal center reactions is crucial not only for the design of effective vaccines against infectious agents and malignant cells but also for the development of therapeutic intervention for the treatment of antibody-mediated immune disorders. Recent advances in this field have revealed specialized subsets of T cells necessary for the control of B cell responses in the follicle. These cells include follicular regulatory T cells and Qa-1-restricted cluster of differentiation $(CD)8^+$ regulatory T cells. In this review, we discuss the current knowledge related to the role of regulatory T cells in the B cell follicle.

Development of Isolation and Cultivation Method for Outer Root Sheath Cells from Human Hair Follicle and Construction of Bioartificial Skin

  • Sin, Yeon-Ho;Seo, Yeong-Gwon;Lee, Du-Hun;Yu, Bo-Yeong;Song, Gye-Yong;Seo, Seong-Jun;Hwang, Seong-Ju;Kim, Yeong-Jin;Yang, Eun-Gyeong;Park, Jang-Seo;Jang, Lee-Seop;Park, Jeong-Geuk
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.302-305
    • /
    • 2003
  • It is difficult to obtain sufficient healthy skin for coverage of a wide area of skin wound. In the skin, an additional population of living epithelial cells is located in the outer root sheath (ORS) of hair $follicles.^{1),2)}$ ORS cells should be a good source of epithelium because they are easily obtainable and patients do not have to suffer from scar formation at donor sites. We modified ordinary primary culture technique for the purpose of solving such problem that epithelial cells have a low propagation and easy aging during culture periods. First of all, we improved primary cultivation methods. In the ordinary primary culture, average yield of human ORS cells was $2\;{\times}\;10^3$ cells/follicle by direct incubation with trypsin (0.1%)/EDTA (0.02%) solution for 15 min at $37^{\circ}C$ but we could obtain about $6.5\;{\times}\;10^3$ cells/follicle by two step enzyme digestion method with dispase (1.2 U/ml) and trypsin (0.1%)/EDTA (0.02%) solution. So we could achieve three times higher primary cultured ORS cell yield. Secondly, we could obtain total $2\;{\times}\;10^7$ cells in serum free medium and even more total $6\;{\times}\;10^7$ cells in modified E-medium with mitomycin C-treated feeder cells during 17 days. Using the cultured ORS cells, and we could make bioartificial skin equivalent in vitro and concluded that ORS cells were progenitor cells for skin epithelial cell.

  • PDF

Deficiency of Formyl Peptide Receptor 2 Retards Hair Regeneration by Modulating the Activation of Hair Follicle Stem Cells and Dermal Papilla Cells in Mice

  • Han, Jinsol;Lee, Chanbin;Jung, Youngmi
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.279-291
    • /
    • 2021
  • Hair loss is one of the most common chronic diseases, with a detrimental effect on a patient's psychosocial life. Hair loss results from damage to the hair follicle (HF) and/or hair regeneration cycle. Various damaging factors, such as hereditary, inflammation, and aging, impair hair regeneration by inhibiting the activation of hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs). Formyl peptide receptor 2 (FPR2) regulates the inflammatory response and the activity of various types of stem cells, and has recently been reported to have a protective effect on hair loss. Given that stem cell activity is the driving force for hair regeneration, we hypothesized that FPR2 influences hair regeneration by mediating HFSC activity. To prove this hypothesis, we investigated the role of FPR2 in hair regeneration using Fpr2 knockout (KO) mice. Fpr2 KO mice were found to have excessive hair loss and abnormal HF structures and skin layer construction compared to wild-type (WT) mice. The levels of Sonic hedgehog (Shh) and β-catenin, which promote HF regeneration, were significantly decreased, and the expression of bone morphogenetic protein (Bmp)2/4, an inhibitor of the anagen phase, was significantly increased in Fpr2 KO mice compared to WT mice. The proliferation of HFSCs and DPCs was significantly lower in Fpr2 KO mice than in WT mice. These findings demonstrate that FPR2 impacts signaling molecules that regulate HF regeneration, and is involved in the proliferation of HFSCs and DPCs, exerting a protective effect on hair loss.

Formation of Chimeric Gap Junction Channels in Mammalian Ovarian Follicle

  • Oh Seunghoon
    • Reproductive and Developmental Biology
    • /
    • v.28 no.3
    • /
    • pp.147-153
    • /
    • 2004
  • The oocyte and its surrounding granulosa cells co-exist in a closed compartment called a follicle, although they receive many signals from other parts of the body. It is well established that the intercellular communications between the oocyte and granulosa cells are required for normal oocyte development and ovulation during folliculogenesis. Gap junctions are intercellular channels allowing the direct transmission of ions and small molecules between coupled cells. Several lines of studies have shown that multiple connexins (Cx, subunits of gap junction) are expressed in mammalian ovarian follicles. Among them, two major connexins Cx37 and Cx43 are expressed in different manner. While the gap junction channels formed by Cx37 are localized between the oocyte and encompassing granulosa cells, the intercellular channels by Cx43 are located between granulosa cells. In this review, I will summarize the general properties of gap junction channels and discuss their possible formation (or compatibility) of intercellular channels formed by the oocyte and granulosa cells.

Isolation and characterization of bovine cementoblast progenitor cells

  • Saito, Masahiro;Tsunoda, Akira;Teranaka, Toshio
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.546.2-546
    • /
    • 2003
  • Dental follicle is the mesenchymal tissue which surrounds developing tooth germ. During tooth root development, periodontal components such as cementum, periodontal ligament and alveolar bone are considered to be created by progenitors present in the dental follicle. However, little is known about these progenitors. Previously we observed that cultured bovine dental follicle cells (BDFC) contained putative cementoblast progenitors. To further analyze the biology of these cells, we have attempted to immortalize BDFC by expression of the polycomb group protein Bmi-1 and human telomerase reverse transcriptase (hTERT). The BDFC expressing Bmi-1 and hTERT showed extended life span by 90 population doublings more than normal BDFC, and still contained cells with potential to differentiate into cementoblasts upon implantation into immunodeficiency mice. Among them, we established a clonal cell line designated as BCPb8, which formed cemetum-like mineralized tissue reactive to anti-cementum specific monoclonal antibody, 3G9, and expressed mRNA for bone sialoprotein, osteocalcin, osteopontin and type I collagen upon implantation. Thus with the combination of hTERT and Bmi-1, we succeeded in immortalization of cementoblast progenitor in BDFC without affecting differentiation potential. The BCPb8 progenitor cell line could be a useful tool not only to study cementogenesis but also to develop regeneration therapy for periodontitis.

  • PDF