Acknowledgement
We thank members of the Choi laboratory for their helpful discussions and comments on the manuscript. This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (NRF-2022R1 C1C1011895 and NRF-2022M3A9D3016848) and Basic Science Research Institute Fund (NRF-2021R1A6A1A10042944). Y.J. was supported by a Genexine Research Fellowship Award. This work was also supported by a BK21 FOUR Research Fellowship funded by the Ministry of Education, Republic of Korea.
References
- Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441, 1080-1086 https://doi.org/10.1038/nature04958
- Van Der Flier LG and Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71, 241-260 https://doi.org/10.1146/annurev.physiol.010908.163145
- Temple S (2001) The development of neural stem cells. Nature 414, 112-117 https://doi.org/10.1038/35102174
- Collins CA, Olsen I, Zammit PS et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289-301 https://doi.org/10.1016/j.cell.2005.05.010
- Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147 https://doi.org/10.1126/science.284.5411.143
- Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157-168 https://doi.org/10.1016/S0092-8674(00)81692-X
- Gronthos S, Mankani M, Brahim J, Robey PG and Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97, 13625-13630 https://doi.org/10.1073/pnas.240309797
- Fuchs E (2008) Skin stem cells: rising to the surface. J Cell Biol 180, 273-284 https://doi.org/10.1083/jcb.200708185
- Blanpain C, Lowry WE, Geoghegan A, Polak L and Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635-648 https://doi.org/10.1016/j.cell.2004.08.012
- Inomata K, Aoto T, Binh NT et al (2009) Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137, 1088-1099 https://doi.org/10.1016/j.cell.2009.03.037
- Scadden DT (2014) Nice neighborhood: emerging concepts of the stem cell niche. Cell 157, 41-50 https://doi.org/10.1016/j.cell.2014.02.013
- Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441, 1075-1079 https://doi.org/10.1038/nature04957
- Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7-25
- Kiger AA, White-Cooper H and Fuller MT (2000) Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 407, 750-754 https://doi.org/10.1038/35037606
- Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836-841 https://doi.org/10.1038/nature02041
- Tavazoie M, Van der Veken L, Silva-Vargas V et al (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 279-288 https://doi.org/10.1016/j.stem.2008.07.025
- Shin J, Berg DA, Zhu Y et al (2015) Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360-372 https://doi.org/10.1016/j.stem.2015.07.013
- Rayagiri SS, Ranaldi D, Raven A et al (2018) Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat Commun 9, 1075
- Lane SW, Williams DA and Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32, 795-803 https://doi.org/10.1038/nbt.2978
- Fuchs E and Blau HM (2020) Tissue stem cells: architects of their niches. Cell Stem Cell 27, 532-556 https://doi.org/10.1016/j.stem.2020.09.011
- Mohyeldin A, Garzon-Muvdi T and Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150-161 https://doi.org/10.1016/j.stem.2010.07.007
- Li L and Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21, 605-631 https://doi.org/10.1146/annurev.cellbio.21.012704.131525
- Moore KA and Lemischka IR (2006) Stem cells and their niches. Science 311, 1880-1885 https://doi.org/10.1126/science.1110542
- Martin K, Potten CS, Roberts SA and Kirkwood T (1998) Altered stem cell regeneration in irradiated intestinal crypts of senescent mice. J Cell Sci 111, 2297-2303 https://doi.org/10.1242/jcs.111.16.2297
- Nalapareddy K, Nattamai KJ, Kumar RS et al (2017) Canonical wnt signaling ameliorates aging of intestinal stem cells. Cell Rep 18, 2608-2621 https://doi.org/10.1016/j.celrep.2017.02.056
- Conboy IM, Conboy MJ, Smythe GM and Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575-1577 https://doi.org/10.1126/science.1087573
- Brack AS, Conboy MJ, Roy S et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807-810 https://doi.org/10.1126/science.1144090
- Nishimura EK (2011) Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res 24, 401-410 https://doi.org/10.1111/j.1755-148X.2011.00855.x
- Matsumura H, Mohri Y, Binh NT et al (2016) Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395
- Keyes BE, Segal JP, Heller E et al (2013) Nfatc1 orchestrates aging in hair follicle stem cells. Proc Natl Acad Sci U S A 110, E4950-4959 https://doi.org/10.1073/pnas.1320301110
- Trueb RM (2006) Pharmacologic interventions in aging hair. Clin Interv Aging 1, 121-129 https://doi.org/10.2147/ciia.2006.1.2.121
- Nishimura EK, Granter SR and Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307, 720-724 https://doi.org/10.1126/science.1099593
- Muller-Rover S, Foitzik K, Paus R et al (2001) A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117, 3-15 https://doi.org/10.1046/j.0022-202x.2001.01377.x
- Joost S, Annusver K, Jacob T et al (2020) The molecular anatomy of mouse skin during hair growth and rest. Cell Stem Cell 26, 441-457 e7
- Cotsarelis G, Sun TT and Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329-1337 https://doi.org/10.1016/0092-8674(90)90696-C
- Tumbar T, Guasch G, Greco V et al (2004) Defining the epithelial stem cell niche in skin. Science 303, 359-363 https://doi.org/10.1126/science.1092436
- Greco V, Chen T, Rendl M et al (2009) A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155-169 https://doi.org/10.1016/j.stem.2008.12.009
- Morris RJ, Liu Y, Marles L et al (2004) Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22, 411-417 https://doi.org/10.1038/nbt950
- Liu Y, Lyle S, Yang Z and Cotsarelis G (2003) Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol 121, 963-968 https://doi.org/10.1046/j.1523-1747.2003.12600.x
- Jaks V, Barker N, Kasper M et al (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40, 1291-1299 https://doi.org/10.1038/ng.239
- Vidal VP, Chaboissier M-C, Lutzkendorf S et al (2005) Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Current Biology 15, 1340-1351 https://doi.org/10.1016/j.cub.2005.06.064
- Rhee H, Polak L and Fuchs E (2006) Lhx2 maintains stem cell character in hair follicles. Science 312, 1946- 1949 https://doi.org/10.1126/science.1128004
- Shirokova V, Biggs LC, Jussila M, Ohyama T, Groves AK and Mikkola ML (2016) Foxi3 deficiency compromises hair follicle stem cell specification and activation. Stem Cells 34, 1896-1908 https://doi.org/10.1002/stem.2363
- Horsley V, Aliprantis AO, Polak L, Glimcher LH and Fuchs E (2008) NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299-310 https://doi.org/10.1016/j.cell.2007.11.047
- Morris RJ, Bortner CD, Cotsarelis G et al (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120, 501-511 https://doi.org/10.1046/j.1523-1747.2003.12088.x
- Hsu Y-C, Li L and Fuchs E (2014) Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157, 935-949 https://doi.org/10.1016/j.cell.2014.02.057
- Wilson C, Cotsarelis G, Wei Z-G et al (1994) Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles. Differentiation 55, 127-136 https://doi.org/10.1046/j.1432-0436.1994.5520127.x
- Rabbani P, Takeo M, Chou W et al (2011) Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145, 941-955 https://doi.org/10.1016/j.cell.2011.05.004
- Tanimura S, Tadokoro Y, Inomata K et al (2011) Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8, 177-187 https://doi.org/10.1016/j.stem.2010.11.029
- Nishimura EK, Jordan SA, Oshima H et al (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854-860 https://doi.org/10.1038/416854a
- Jahoda CA, Horne KA and Oliver RF (1984) Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311, 560-562 https://doi.org/10.1038/311560a0
- Rompolas P, Deschene ER, Zito G et al (2012) Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496-499 https://doi.org/10.1038/nature11218
- Paus R, Maurer M, Slominski A and Czarnetzki BM (1994) Mast cell involvement in murine hair growth. Dev Biol 163, 230-240 https://doi.org/10.1006/dbio.1994.1139
- Castellana D, Paus R and Perez-Moreno M (2014) Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol 12, e1002002
- Ali N, Zirak B, Rodriguez RS et al (2017) Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119-1129 e11
- Wang ECE, Dai Z, Ferrante AW, Drake CG and Christiano AM (2019) A subset of TREM2(+) dermal macrophages secretes oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth. Cell Stem Cell 24, 654-669 e656
- Hsu YC, Pasolli HA and Fuchs E (2011) Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92-105 https://doi.org/10.1016/j.cell.2010.11.049
- Li KN, Jain P, He CH, Eun FC, Kang S and Tumbar T (2019) Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. Elife 8, e45977
- Gur-Cohen S, Yang H, Baksh SC et al (2019) Stem celldriven lymphatic remodeling coordinates tissue regeneration. Science 366, 1218-1225 https://doi.org/10.1126/science.aay4509
- Pena-Jimenez D, Fontenete S, Megias D et al (2019) Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration in vivo. EMBO J 38, e101688
- Plikus MV, Mayer JA, de la Cruz D et al (2008) Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340-344 https://doi.org/10.1038/nature06457
- Festa E, Fretz J, Berry R et al (2011) Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761-771 https://doi.org/10.1016/j.cell.2011.07.019
- Shook B, Rivera Gonzalez G, Ebmeier S, Grisotti G, Zwick R and Horsley V (2016) The role of adipocytes in tissue regeneration and stem cell niches. Annu Rev Cell Dev Biol 32, 609-631 https://doi.org/10.1146/annurev-cellbio-111315-125426
- Fujiwara H, Ferreira M, Donati G et al (2011) The basement membrane of hair follicle stem cells is a muscle cell niche. Cell 144, 577-589 https://doi.org/10.1016/j.cell.2011.01.014
- Shwartz Y, Gonzalez-Celeiro M, Chen C-L et al (2020) Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182, 578-593 e519
- Chen CL, Huang WY, Wang EHC, Tai KY and Lin SJ (2020) Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J Biomed Sci 27, 43
- Chen C-C, Plikus MV, Tang P-C, Widelitz RB and Chuong CM (2016) The modulatable stem cell niche: tissue interactions during hair and feather follicle regeneration. J Mol Biol 428, 1423-1440 https://doi.org/10.1016/j.jmb.2015.07.009
- Choi S, Zhang B, Ma S et al (2021) Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature 592, 428-432 https://doi.org/10.1038/s41586-021-03417-2
- Ge Y, Miao Y, Gur-Cohen S et al (2020) The aging skin microenvironment dictates stem cell behavior. Proc Natl Acad Sci U S A 117, 5339-5350 https://doi.org/10.1073/pnas.1901720117
- Giangreco A, Qin M, Pintar JE and Watt FM (2008) Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 7, 250-259 https://doi.org/10.1111/j.1474-9726.2008.00372.x
- Xie Y, Chen D, Jiang K et al (2022) Hair shaft miniaturization causes stem cell depletion through mechanosensory signals mediated by a Piezo1-calcium-TNF-alpha axis. Cell Stem Cell 29, 70-85 e6
- Geiger H and Van Zant G (2002) The aging of lympho-hematopoietic stem cells. Nat Immunol 3, 329-333 https://doi.org/10.1038/ni0402-329
- Sudo K, Ema H, Morita Y and Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192, 1273-1280 https://doi.org/10.1084/jem.192.9.1273
- Schultz MB and Sinclair DA (2016) When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 143, 3-14 https://doi.org/10.1242/dev.130633
- Liu L and Rando TA (2011) Manifestations and mechanisms of stem cell aging. J Cell Biol 193, 257-266 https://doi.org/10.1083/jcb.201010131
- Kobielak K, Stokes N, de la Cruz J, Polak L and Fuchs E (2007) Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci U S A 104, 10063-10068 https://doi.org/10.1073/pnas.0703004104
- Lien W-H, Polak L, Lin M, Lay K, Zheng D and Fuchs E (2014) In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat Cell Biol 16, 179-190 https://doi.org/10.1038/ncb2903
- Daszczuk P, Mazurek P, Pieczonka TD, Olczak A, Boryn LM and Kobielak K (2020) An intrinsic oscillation of gene networks inside hair follicle stem cells: an additional layer that can modulate hair stem cell activities. Front Cell Dev Biol 8, 595178
- Kandyba E, Leung Y, Chen YB, Widelitz R, Chuong C-M and Kobielak K (2013) Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proc Natl Acad Sci U S A 110, 1351-1356 https://doi.org/10.1073/pnas.1121312110
- Veeman MT, Axelrod JD and Moon RT (2003) A second canon: functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 5, 367-377 https://doi.org/10.1016/S1534-5807(03)00266-1
- Tiwari RL, Mishra P, Martin N et al (2021) A Wnt5a-Cdc42 axis controls aging and rejuvenation of hair-follicle stem cells. Aging (Albany NY) 13, 4778
- Wang L, Yang L, Debidda M, Witte D and Zheng Y (2007) Cdc42 GTPase-activating protein deficiency promotes genomic instability and premature aging-like phenotypes. Proc Natl Acad Sci U S A 104, 1248-1253 https://doi.org/10.1073/pnas.0609149104
- Zhang Z, Lei M, Xin H et al (2017) Wnt/β-catenin signaling promotes aging-associated hair graying in mice. Oncotarget 8, 69316
- Crabtree GR and Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109, 67-79 https://doi.org/10.1016/S0092-8674(02)00699-2
- Wang L, Siegenthaler JA, Dowell RD and Yi R (2016) Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science 351, 613-617 https://doi.org/10.1126/science.aad5440
- Lay K, Kume T and Fuchs E (2016) FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc Natl Acad Sci U S A 113, 1506-1515 https://doi.org/10.1073/pnas.1601569113
- Li G, Tang X, Zhang S et al (2020) SIRT7 activates quiescent hair follicle stem cells to ensure hair growth in mice. EMBO J 39, e104365
- Cao W, Li L, Kajiura S et al (2016) Aging hair follicles rejuvenated by transplantation to a young subcutaneous environment. Cell Cycle 15, 1093-1098 https://doi.org/10.1080/15384101.2016.1156269
- Chen CC, Murray PJ, Jiang TX et al (2014) Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4. J Invest Dermatol 134, 2086-2096 https://doi.org/10.1038/jid.2014.139
- Ji J, Ho BS, Qian G, Xie XM, Bigliardi PL and BigliardiQi M (2017) Aging in hair follicle stem cells and niche microenvironment. J Dermatol 44, 1097-1104 https://doi.org/10.1111/1346-8138.13897
- Koester J, Miroshnikova YA, Ghatak S et al (2021) Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat Cell Biol 23, 771-781 https://doi.org/10.1038/s41556-021-00705-x
- Lei M and Chuong CM (2016) Stem cells. Aging, alopecia, and stem cells. Science 351, 559-560 https://doi.org/10.1126/science.aaf1635
- Doles J, Storer M, Cozzuto L, Roma G and Keyes WM (2012) Age-associated inflammation inhibits epidermal stem cell function. Genes Dev 26, 2144-2153 https://doi.org/10.1101/gad.192294.112
- Chen J, Fan ZX, Zhu DC et al (2021) Emerging role of dermal white adipose tissue in modulating hair follicle development during aging. Front Cell Dev Biol 9, 728188
- Jin H, Zou Z, Chang H, Shen Q, Liu L and Xing D (2021) Photobiomodulation therapy for hair regeneration: A synergetic activation of beta-CATENIN in hair follicle stem cells by ROS and paracrine WNTs. Stem Cell Reports 16, 1568-1583 https://doi.org/10.1016/j.stemcr.2021.04.015
- Hu XM, Li ZX, Zhang DY et al (2021) A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther 12, 453
- Neves J, Sousa-Victor P and Jasper H (2017) Rejuvenating strategies for stem cell-based therapies in aging. Cell Stem Cell 20, 161-175 https://doi.org/10.1016/j.stem.2017.01.008
- Narbonne P (2018) The effect of age on stem cell function and utility for therapy. Cell Med 10, 2155179018773756
- Harel S, Higgins CA, Cerise JE et al (2015) Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv 1, e1500973
- Cervelli V, Garcovich S, Bielli A et al (2014) The effect of autologous activated platelet rich plasma (AA-PRP) injection on pattern hair loss: clinical and histomorphometric evaluation. Biomed Res Int 2014, 760709
- Son MJ, Jeong JK, Kwon Y et al (2018) A novel and safe small molecule enhances hair follicle regeneration by facilitating metabolic reprogramming. Exp Mol Med 50, 1-15 https://doi.org/10.1038/s12276-018-0185-z
- Wu HC, Fan X, Hu CH et al (2020) Comparison of mitochondrial transplantation by using a stamp-type multineedle injector and platelet-rich plasma therapy for hair aging in naturally aging mice. Biomed Pharmacother 130, 110520