• Title/Summary/Keyword: foliation

Search Result 155, Processing Time 0.018 seconds

Preliminary Study on the Genesis and Nickel Potential of Ultramafic Rocks in Chungnam Yugu area, South Korea (충남 유구지역 초염기성암의 성인과 니켈 잠재성에 대한 예비연구)

  • Ijeung Kim;Sang-Mo Koh;Otgon-Erdene Davaasuren;Gi Moon Ahn;Chul-Ho Heo;Bum Han Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.323-336
    • /
    • 2023
  • We investigated the nickel potential and genesis of ultramafic rocks in the Yugu area to secure nickel resources in South Korea. The Yugu ultramafic rocks, located in the southwest of the Gyeonggi Massif, are characterized by spinel peridotite and exhibit strong serpentinization along their boundaries. The serpentinization is observed as olivine transformed to antigorite and chrysotile, while pentlandite, the nickel sulfide mineral, altered into millerite and awaruite. Serpentine displays distinct foliation, aligning subparallel to the ultramafic rock boundaries and foliation of Yugu gneiss. This suggests that the uplift of ultramafic rocks resulted in hydrothermal infiltration likely sourced from the Yugu gneiss metamorphism. The Yugu ultramafic rocks are residues after 5~18% partial melting of abyssal peridotite. Enriched light rare earth elements and Eu imply secondary metasomatism. Geochemistry suggests a link between the formation of Yugu ultramafic rock and the Triassic collision of the North and South China continents. The nickel content is around 0.17~0.21%, mainly contained in olivine and serpentine. Hence, in addition to the mineral processing study on the sulfide minerals, focused studies on oxide minerals for enhanced nickel recovery within the Yugu ultramafic rock are strongly suggested.

Effects of Elevated $CO_2$ Concentration and Increased Temperature on the Change of the Phenological and Reproductive characteristics of Phytolocca insularis, a Korea endemic plant ($CO_2$농도 및 온도 증가가 한국특산식물 섬자리공의 식물계절학 및 번식생태학적 특성 변화에 미치는 영향)

  • Shin, Dong-Hun;Kim, Hae-Ran;You, Young-Han
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The effects of elevated $CO_2$ and temperature on the phenological and reproductive characteristics of Phytolocca insularis were examined in ambient condition (control) and green house situation (treatment), 700 ~ 800 ppm $CO_2$ and $2^{\circ}C$ elevated temperature, from March 2010 to April 2011. Phenological responses such as foliation, inflorescence formation, flowering, fruit appearance, fruit maturing of P. insularis grown in the treatment were 6~ 20 day faster than in the control. The percent of fruit set, number of fruit and seed per shoots, weight of fruit and seed per shoots of P. insularis were higher in control than in the treatment. The number of inflorescence per shoots showed no difference between in the control and in the treatment. These results demonstrated that the reproductive response of P. insularis might be negatively influenced by increased $CO_2$ concentration and elevated temperature.

Geological Values of Seonangbawi Area as A Geological Field Course Site (야외지질학습장으로써 서낭바위 일대의 지질학적 가치)

  • Kil, Youngwoo;Choi, Don Won;Cong, Nguyen The;Jung, Woochul;Jo, Yunsoo;Jung, Yeojin
    • Journal of the Korean earth science society
    • /
    • v.39 no.2
    • /
    • pp.164-177
    • /
    • 2018
  • Even though various geological attractions are distributed domestically, the geological attractions are rarely utilized as field course site. The purpose of this study is to make Seonangbawi area as the field course site after geological investigations are carried out in detail. Seonangbawi is located about 1km southeast from Songjiho beach in Gangwon-do. Seonangbawi area is simply composed of Cretaceous Seokcho granite with the overlay of Quaternary alluvium. Geological field course in the Seonangbawi area will be useful to the student and citizen for developing the knowledge of geological phenomena, such as the formation of granite and minerals, and weathering process. In addition, the student and citizen can develop the knowledge of the geological structures, such as joint (N50E/80NW, N40W/84SW), fault (N42W/83SW), foliation (N32E/54SE), and dyke (N35E/40SE, N26W/63SW), and geographical features, such as tor, taforni, groove, and gnamma in the field. Accordingly, the Seonangbawi area is the best place to learn various geological and geographical phenomena and to discuss the origin of Seonangbawi with limited space.

Alteration Textures and Mineral Chemistry of Margarite from Miwon Area, Chungcheongbukdo (충북미원지역에서 산출하는 마카라이트의 변질양상 및 광물화학)

  • 이승준;안중호;김현철;조문섭
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2002
  • Margarite, which occurs in the Unkyori Formation of Miwon area, Chungcheongbukdo, South Korea, was investigated using the petrographic microscope, back-scattered electron images (BSEI), and electron probe microanalyzer (EPMA) to characterize the alteration textures and mineral chemistries. Most margarite crystals are inhomogeneous, and chlorite was commonly observed to occur at the boundaries parallel to the rim of margarite. Cracks occur across the basal plane of the margarite, and margarite is partly replaced by chlorite along the cracks. In additon, muscovite and biotite are intergrown in margarite and chlorite crystals, suggesting that margarite was partially altered to chlorite as well as to muscovite and biotite. Chemical analysis data show that paragonite solid solution in the margarite is approximately 19.6 mol%, but clintonite solid solution is negligible. Margarite crystals in the Unkyori Formation cut or penetrate other metamorphic minerals In the same thin sections and are oriented randomly without any relationship with the foliation of host rocks, indicating that formed as a secondary mineral after peak metamorphism. Furthermore, it seems that hydrothermal fluids associated with the Mesozoic intrusions developed near the sample are closely related to the margarite formation.

Survey of the Geology and Geological Structure of the Foundations at a Construction Site for Tram (경전철 건설구간의 지질 및 지질구조특성에 관한 지반조사)

  • Lee, Byung-Joo;SunWoo, Chun;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2010
  • The foundation area for tram contains biotite gneiss, quartzo-feldspathic gneiss, calc-silicate rock, and porphyroblastic gneiss of the pre-Cambrian Kyeonggi gneiss complex. These rocks record at least three stages of deformation, as indicated by fold sets of contrasting orientations (D1-D3). Joints are generally steeply dipping and strike NW-SE to WNW-ESE. The Gonjiam Fault, which strikes WNW-ESE, follows a river in the area. The fault possesses a 3-m-wide fracture zone, a 10-m-wide damage zone, and is 15 km long. Two tunnels have been constructed through the biotite gneiss. The geometric relationship between discontinuities (e.g., joints and foliation) and tunneling direction reveals that set 3 of the AA tunnel is unstable but that BB tunnel is relatively safe.

Fractals and Fragmentation of Survivor Grains within Gouge Zones along Boundary Faults in the Tertiary Waeup Basin (제3기 와읍분지 경계단층을 따라 발달하는 단층비지 내 잔류입자의 프랙탈과 파쇄작용)

  • Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • Fault gouge samples were collected from the fault cores of the boundary faults between the Cretaceous Basement and the Tertiary Waeup Basin. Fractal dimensions (D) were obtained by using survivor grains which were analysed from six thin sections of the gouges under the optical microscope. The elliptical survivor grains show a shape preferred orientation almost parallel to clay foliation in matrix, suggesting that it was formed by the rotation of the survivor grains in abundant fine-grained matrix during repeated fault slips. The size distributions of the survivor grains follow power-laws with fractal dimensions in the 2.40-3.02 range. D values of all samples but one are higher than a specific D value equal to 2.58 which predicts the self similarity of fragmentation process in constrained comminution model (Sammis et al., 1987), which indicates large fault slip and multiple faulting. Probably the higher D values than 2.58 mean the non-self-similar evolution of cataclastic rocks where fragmentation mechanism changed from constrained comminution to the grain abrasion accompanying selective fracture of larger grains.

Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea (장군봉지역 북부 소백산육괴의 고생대 변성퇴적암류에 대한 변형작용과 변성작용 사이의 상대적인 시간관계)

  • 강지훈;오세봉;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.190-206
    • /
    • 1998
  • The microstructures and time-relationship between deformation and growth of metamorphic minerals(metamorphism) of the Paleozoic metasedimentary rocks(Joseon Supergroup and Pyeongan Group) in the Janggunbong area at the central-south part in the North Sobaegsan Massif, Korea, have been analyzed in this paper. The first phase metamorphism (low-pressure type metamorphism), recognized as the crystallization of stack-type chloritoid and biotite and augen-type old andalusite, occurred under non-deformational condition before D1 deformation related to the formation of an E-W trending isocline-synclinal fold(Janggunbong fold) and associated its axial plane S1 foliation, and produced regional mineralogical zoning of E-W trend in the Paleozoic rocks. The second phase metamorphism(medium-pressure type metamorphism), related to the growth of staurolite and garnet porphyroblasts with straight or curved internal foliations(Si), occurred under non-deformational condition after D1 deformation related to the formation of E-W trending thrusts modifying the Janggunbong fold and during D2 deformation related to the formation of E-W trending Yecheon shear zone. This metamorphism also produced regional mineralogical zoning of E-W trend. After D2 deformation occurred the intrusion of Jurassic Chunyang granite and associated its contact metamorphism which crystallized patchy-type young andalusite and prismatic- or fibrous-type sillimanite and coarse-grained garnet. This metamorphism occurred under non-deformational condition before D3 deformation related to the formation of S3 crenulation cleavage and during early phase of D3 deformation, and formed narrow mineralogical zoning of N-S trend near Chunyang granite.

  • PDF

대홍활석광상 주위의 편마암류의 지화학적 특징과 공존광물의 화학적 평형

  • 이상헌;최기주
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.138-155
    • /
    • 1994
  • Granitic gneiss containing biotite banded gneiss relict around the Daeheung talc deposit are widely distributed which were formed by regional metamorphism of both epidote-amphibolite and iater greenschist facies and granitization. They were derived from same silico-aluminous rocks of sedimentary origin. The mineral assemblages, which are common in the biotite banded gneiss, formed during regional metamorphisms, are survived in the granitic gneiss. The mineral assemblages of the latter greenschist facies may be formed retrogressively from the first epidote-amphibolite facies. The chemical compositions of biotite, muscovite, and chlorite, the important constituents of the gneisses, were controlled by the bulk composition, the chemical composition of the original mineral, and environment of the regional metamorphisms and granitization. The chemical equilibrium between coexisting'minerals, especially biotite and muscovite, is relatively well established, which was controlled mainly by tschermakitic and phengitic substitutions. Cholrite was formed mainly from either biotite or muscovite by retrogressive alteration or granitization, and have nearly similar chemical compositions regardless of the occurrences. The orientation trend of the foliation, joint and quartz vein developed in the gneisses was analyzed by equal area projection which the latter two show nearly identical trend in the strike and dip. This may suggest that the hydrothermal solution was introduced along joint during wet granitization.

  • PDF

Petrology of Charnockite in Sancheong Area (산청지역에 분포하는 챠노카이트의 암석학적 연구)

  • Lee, Sang-Won;Ock, Soo-Seck;Lee, Young-Taek
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.251-264
    • /
    • 2004
  • The Charnockite in Sancheong region is quarzofeldspathic rock containing orthopyroxene and garnet with a color dark than common granitic rocks. The Chamockite are mostly massive and medium to coarse-grained with K-feldspar phenocryst, but reveal weak foliation. The rock consist mainly of quartz, K-feldspar, plagioclase and orhopyroxene, with biotite, garnet, and anthophyllite. In petrochemistry, the Chamockite has 61-65% $SiO_2$ contents, varying gradually into the margin contacted with orthogneiss, which have compositions of felsic igneous rocks. Major element show almost systematical variation with those of the marginal orthogneisses, except the hornblende gneiss and anorthosite. The Charnockite and orthogneisses show the tholeiitic differentiational trend. Trace and rare earth element abundance patterns in the Charnockite show remarkable negative Sr and Eu anomalies similar to orthogneisses, but different from the hornblende gneiss and anorthosite. Eu contents of the Charnockite are richer than that of orthogneisses. The metamorphic condition of the Charnockite were tested by an orthopyroxene-garnet geotherrnorneter and a plagioclase-garnet geobarometer. Estimated P-T conditions are about $761^{\circ}C$ and 7 kbar at peak metamorphism, but $653^{\circ}C$ and 6.4 kbar at retrograde metamorphism. This suggests that the Charnockite have from an early stage of high-grade metamorphism to represent the granulite facies and then to a late stage medium-grade metamorphism belonging to the amphibolite facies.

Geological Structure of the Jirisan Metamorphic Complex of the Yeongnam Massif in the Hwagae Area, Korea (화개지역에서 영남육괴 지리산 변성암복합체의 지질구조)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.251-261
    • /
    • 2013
  • Hwagae area, which is situated in the southeastern part of the Jirisan province, Yeongnam massif, Korea, is mainly composed of Precambrian Jirisan metamorphic rock complex (JMRC). Lithofacies distribution of the Precambrian constituent rocks mainly shows NS-trending tight fold and EW-trending open fold. This paper researched deformational phased structural characteristics of JMRC based on the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structure of this area was formed through at least three phases of ductile deformation. (1) Most of structural elements related to the $D_1$ deformation were recognized as $S_{0-1-2}$ composite foliation which was transposed by the $D_2$ deformation. (2) The $D_2$ deformation occurred under the EW-directed tectonic compression, and formed the NS-trending $F_2$ fold and $D_2$ ductile shear zone which is (sub)parallel to the axial plane of $F_2$ fold. (3) The $D_3$ deformation occurred under the NS-directed tectonic compression, and partially reoriented the pre-$D_3$ structural elements into ENE or WNW direction. It indicates that the distribution of Precambrian lithofacies showing NS and EW-trending folds in the Hwagae area is closely associated with the $D_2$ and $D_3$ deformations, respectively.