• Title/Summary/Keyword: foliar treatment

Search Result 215, Processing Time 0.022 seconds

Herbicidal Activity of Chrysophanic Acid in Semi-field Condition (천연물질 Chrysophanic Acid의 포장조건 제초 활성)

  • Choi, Jung-Sup;Jang, Hyun-Woo;Seo, Bo-Ram;Hwang, Hyun-Jin;Kim, Jae-Deog;Kim, Jin-Seog;Chun, Jae-Chul;Kim, Song-Mun
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.429-436
    • /
    • 2010
  • Herbicidal activity and characteristics of chrysophanic acid were investigated in semi-field condition. At early and middle post-emergence, Trifolium repens appeared to be very susceptible to chrysophanic acid of $2,000{\mu}g\;mL^{-1}$. However, herbicidal activity of chrysophanic acid of $2,000{\mu}g\;mL^{-1}$ estimated by visual injury to Artemisia princeps was not caused considerable phytotoxicity. Also by foliar application, the concentration of crysophanic acid for effectively control to Polygonum aviculare was much higher than $2,000{\mu}g\;mL^{-1}$. Herbicidal activity of chrysophanic acid to Echinochloa crus-galli, Cypres difformis, Setaria viridis, Digitaria sangguinalis, Bidens tripartita by foliar application was more effective at concentration ranges from 4,000 to $6,000{\mu}g\;mL^{-1}$. These results suggest that chrysophanic acid demanded for higher than $2,000{\mu}g\;mL^{-1}$ to successful weed control in the field condition.

Seasonal Soil and Foliar Nutrient Concentrations, and Fruit Quality in a Pesticide-Free Pear Orchard as Affected by Seeding Timing and Method of Cover Crops (녹비작물의 파종시기와 방법이 무농약 배과원의 시기별 토양화학성과 엽내 무기성분, 과실품질에 미치는 영향)

  • Lim, Kyeong-Ho;Choi, Jin-Ho;Kim, Wol-Soo;Kim, Hyun-Ji;Song, Jang-Hoon;Cho, Young-Sik;Yim, Sun-Hee;Jung, Seok-Kyu;Choi, Hyun-Sug
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • BACKGROUND: This study was conducted to investigate the effects of seeding timing and method of rye and/or hairy vetch on seasonal soil and foliar nutrient concentrations as well as fruit quality in a pesticide-free pear orchard. METHODS AND RESULTS: The treatments included as followed: single seeding of rye in September (Sep-Mono), November (Nov-Mono), and January (Jan-Mono), or mix seeding of rye+hairy vetch in November (Nov-Mix) and January (Jan-Mix), or sod culture as a control. Cover crops or vegetation was mown and mulched on the soil surface in April and May for two years. Nov-Mix treatment produced the highest dry matter weight of $12,070kg\;ha^{-1}$, with the lowest dry matter weight for sod culture ($6,520kg\;ha^{-1}$), following Jan-Mix ($7,030kg\;ha^{-1}$). Nov-Mix treatments increased potential amount of N, P, and K from the raw materials of the cover crops as well as improved soil physical properties. Nov-Mix treatments overall elevated soil pH, EC, organic matter, and $P_2O_5$ in May compared to other cover crop treatments or sod culture. The difference of the seasonal nutrient concentrations in leaves or fruit qualities were not consistently occurred amongst treatments. CONCLUSION: Nov-Mix treatments showed playing role in a substitute of a chemical fertilizer. Delayed seeding of cover crops such as Jan-Mix did not increase the potential dry matter production due to the short growing period, and the seeding time would affect the dry matter production of cover crops.

Influence of Low Temperature and Chilling Time on Freezing Hardness of Apple Dwarf-rootstocks and Main Cultivars in Korea (저온 및 저온경과시간이 사과나무 왜성대목 및 주요품종의 내동성에 미치는 영향)

  • Kweon, Hun-Joong;Sagong, Dong-Hoon;Song, Yang-Yik;Park, Moo-Yong;Yoon, Tae-Myung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • This study was conducted to find out the freezing hardness of apple tree as influenced by dwarfrootstocks, cultivars, and low temperature treatments. The dwarf-rootstocks used were M.9 and M.26, and three cultivars used were early-maturing 'Tsugaru', mid-maturing 'Hongro', and late-maturing 'Fuji'. Chilling temperatures were applied from $0^{\circ}C$ to $-40^{\circ}C$. Checking points of apple tree for freezing hardness were rootstock, trunk, feather, floral bud and foliar bud. Investigations were evaluated by the measure of water loss, electrolyte leaching, and sprouting. The results did not show the differences in water loss, electrolyte leaching, and sprouting by dwarf-rootstocks. Water loss of 'Fuji' was lower than that of 'Tsugaru' and 'Hongro', but sprouting ratio of 'Fuji' was higher than that of 'Tsugaru' and 'Hongro'. Water loss and electrolyte leaching increased as treated by lower temperature, while sprouting ratio decreased. In $-35^{\circ}C$ treatment, sprouting of rootstock and trunk part were higher than that of feather, while sprouting of floral bud was lower than that of foliar bud. Sprouting of bourse shoot at the accumulated low temperature in terms of $-10^{\circ}C$ per day was 100% in the 28 days, and sharply decreased about 50% in the 35 days. In conclusion, there were no differences in freezing hardness between M.9 and M.26, but freezing hardness of late-maturing cultivar was tended to stronger than that of early-maturing and mid-maturing cultivars. Freezing hardness of floral bud was extremely weak $-30^{\circ}C$.

Effect of Lime Materials Application on Reducing Injury of Simulated Acid Rain in Soybean (콩의 산성비 피해경감을 위한 석회물질의 시용효과)

  • Kim, Bok-Jin;Back, Jun-Ho;Kim, Heung-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.175-180
    • /
    • 1997
  • This experiment was conducted to find out the effects of lime materials application on reducing injury of simulated acid rain(SAR) in soybean grown in pot contained with sandy loam. Six treatments including control, slaked lime(SL), 1% and 2% lime water(LW) and composite treatments with SL+LW were applied. Slaked lime was applied to soil in pot before planting, and lime water was applied to leaves a day prior to the spray of SAR(pH 2.7) and normal rain(pH 6.0), and these were sprayed at 2-day intervals. Growth, yield and yield components, foliar injury rate, chrolophyll content and photosynthetic activity in leaves, content of mineral nutrients in plant and soil chemical properties were analyzed and investigated. These results obtained are summarized as follows : Seed yield of all lime treatment was reduced by SAR compared with control. But seed yield of all lime treatment was increased with treatment of lime material in soil and on leaves. After 15 and 45 times spray of SAR, all lime treatments were effective in injury reducing visible injury of leaves compared with none treatment. Chlorophyll content in leaves was highest in plants treated with slaked lime+ 1% lime water and photosynthetic activity was highest with treatment of slaked lime. Concentration of total nitrogen, phosphate, and sulfur in soybean plant were increased by the spray of SAR. Concentration of total nitrogen, potassium and calcium in soybean plant were increased with treatment of slaked lime into soil. By treatments of SAR, soil pH was decreased, and total nitrogen and sulfur concentration in soil were increased. However, available phosphate and exchangeable cations in soil such as calcium, magnesium and potassium were reduced. Soil pH, calcium and silicate concentration were increased with treatment of slaked lime into soil.

  • PDF

The visible injury and physiological responses of three varieties of hot peppers to ozone

  • Kim, Bo-Sun;Yun, Sung-Chul
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.93.1-93
    • /
    • 2003
  • A growth chamber fumigation was conducted to evaluate the ozone (O3) on the physiology of three hot pepper, Capsicum annuum L. cultivars, 'dabotab', 'buchon' and 'pochungchun'. Thirty-day old plants were exposed to O3 of 120 nl 1-1 in the chambers for 8 h d-1 for 3 days. Foliar damage due to O3 was different from the varieties, 'dabotab'was most sensitive to O3, 'pochungchun' was medium, and 'buchon' was resistant. Ozone symptom on the leaves was bifacial necorsis. Photosynthesis and stomatal conductance were decreased due to O3 treatment, but they were not much different from the variety. Decreases of net photosynthesis by O3 were 56%, 40% and 35% on 'dabotab', 'buchon' and 'pochungchun', respectively Decreases of stomatal conductance by O3 were 66%, 63%, and 50% on each varieties. Ozone closed the stomata and decrease net photosynthesis on hot peppers regardless of the variety. Light curves on the three varieties were showing similar patterns that O3 damage on net photosynthesis were started at the low levels of light with or without the visible injury, Assimilation-internal CO2 concentration curves of the three cultivars were not different due to the treatment. It means there was not significant biochemical damage Inside the leaves by O3. In conclusion, ozone closed the stomata and damaged light capturing system of the pepper leaves with or without the visible damage. Although visible damage of the leaves could be a good indicator of O3 resistance, the ecophysiological change by O3 were not proportional to the amout of visible injuries

  • PDF

Influence of Commercial Antibiotics on Biocontrol of Soft Rot and Plant Growth Promotion in Chinese Cabbages by Bacillus vallismortis EXTN-1 and BS07M

  • Sang, Mee Kyung;Dutta, Swarnalee;Park, Kyungseok
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2015
  • We investigated influence of three commercial antibiotics viz., oxolinic acid, streptomycin, and validamycin A, on biocontrol and plant growth promoting activities of Bacillus vallismortis EXTN-1 and BS07M in Chinese cabbage. Plants were pre-drenched with these strains followed by antibiotics application at recommended and ten-fold diluted concentration to test the effect on biocontrol ability against soft rot caused by Pectobacterium carotovorum SCC1. The viability of the two biocontrol strains and bacterial pathogen SCC1 was significantly reduced by oxolinic acid and streptomycin in vitro assay, but not by validamycin A. In plant trials, strains EXTN-1 and BS07M controlled soft rot in Chinese cabbage, and there was a significant difference in disease severity when the antibiotics were applied to the plants drenched with the two biocontrol agents. Additional foliar applications of oxolinic acid and streptomycin reduced the disease irrespective of pre-drench treatment of the PGPRs. However, when the plants were pre-drenched with EXTN-1 followed by spray of validamycin A at recommended concentration, soft rot significantly reduced compared to untreated control. Similarly, strains EXTN-1 and BS07M significantly enhanced plant growth, but it did not show synergistic effect with additional spray of antibiotics. Populations of the EXTN-1 or BS07M in the rhizosphere of plants sprayed with antibiotics were significantly affected as compared to control. Taken together, our results suggest that the three antibiotics used for soft rot control in Chinese cabbage could affect bacterial mediated biocontrol and plant growth promoting activities. Therefore, combined treatment of the PGPRs and the commercial antibiotics should be carefully applied to sustain environmental friendly disease management.

Effect of Chitosan, Wood Vinegar and EM on Microorganisms in Soil and Early Growth of Tomato (키토산, 목초액 및 EM 처리가 토양 미생물상의 변화 및 토마토의 초기생육에 미치는 영향)

  • Jeong, Soon-Jae;Oh, Ju-Sung;Seok, Woon-Young;Kim, Jeong-Han;Kim, Doh-Hoon;Chung, Won-Bok
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.433-443
    • /
    • 2006
  • With treatment of Kitosan, Wood vinegear and EM(effective microoganism) which farmers call it as substance in fertilizing, conditioning and disease control substances, authors in vestigated on microorganisms change in soil and ealy growth characteristics of tomato. The results were summarized as follows: Among foliar application of kitosan, wood vinegear and EM(effective microoganism) treatments diluted by chitosan 500 times solution level was effective considering growth of tomato as compared other dilutions and control plot. Change of microorganism number in the soil for cultivation of tomato was increased with microorganism treatment plot as compared with control plot. Specially chitosan 500 times solution level showes the most significant effect.

  • PDF

Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid

  • Bivi, M. Shahul Hamid Rahamah;Paiko, Adamu Saidu;Khairulmazmi, Ahmad;Akhtar, M.S.;Idris, Abu Seman
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.396-406
    • /
    • 2016
  • Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.

Mitigation Effects of Foliar-Applied Hydrogen Peroxide on Drought Stress in Sorghum bicolor (과산화수소 엽면 처리에 의한 수수에서 한발 스트레스 완화 효과)

  • Shim, Doo-Do;Lee, Seung-Ha;Chung, Jong-Il;Kim, Min Chul;Chung, Jung-Sung;Lee, Yeong-Hun;Jeon, Seung-Ho;Song, Gi-Eun;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.113-123
    • /
    • 2020
  • Global climatic change and increasing climatic instability threaten crop productivity. Due to climatic change, drought stress is occurring more frequently in crop fields. In this study, we investigated the effect of treatment with hydrogen peroxide (H2O2) before leaf development on the growth and yield of sorghum for minimizing the damage of crops to drought. To assess the effect of H2O2 on the growth of sorghum plant, 10 mM H2O2 was used to treat sorghum leaves at the 3-leaf stage during growth in field conditions. Plant height, stem diameter, leaf length, and leaf width were increased by 7.6%, 9.6%, 8.3% and 11.5%, respectively. SPAD value, chlorophyll fluorescence (Fv/Fm), photosynthetic rate, stomatal conductance, and transpiration rate were increased by 3.0%, 4.9%, 26.0%, 23.4% and 12.7%, respectively. The amount of H2O2 in the leaf tissue of sorghum plant treated with 10 mM H2O2 was 0.7% of the applied amount after 1 hour. The level increased to approximately 1.0% after 6 hours. The highest antioxidant activity measured by the Oxygen Radical Absorbance Capacity assay was 847.3 µmol·g-1 at 6 hour after treatment. However, in the well-watered condition, the concentration of H2O2 in the plant treated by the foliar application of H2O2 was 227.8 µmol·g-1 higher than that of the untreated control. H2O2 treatment improved all the yield components and yield-related factors. Panicle length, plant dry weight, panicle weight, seed weight per plant, seed weight per unit area, and thousand seed weight were increased by 8.8%, 18.0%, 24.4%, 24.7%, 29.9% and 7.1%, respectively. Proteomic analysis showed that H2O2 treatment in sorghum increased the tolerance to drought stress and maintained growth and yield by ameliorating oxidative stress.

Eco-physiological Responses of Two Populus deltoides Clones to Ozone

  • Yun, Sung-Chul;Kim, Pan-Ki;Hur, Jae-Seoun;Lee, Jae-Cheon;Park, Eun-Woo
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.93-100
    • /
    • 2001
  • One-year-old cottonwood (Populus deltoides Bartr.) clones, which were classified as sensitive or tolerant, were exposed to 150 n1/1 ozone (O$_3$) over 8 days for 8 hours each day under glass chamber conditions with natural sunlight. The leaves of the sensitive clone had black stipple and bifacial necrosis after $O_3$ treatment. Photosynthesis and stomatal conductance were measured before, during, and after the $O_3$ treatment. The photosynthetic rates due to $O_3$ treatment were decreased 51 percent and 34 percent on the sensitive and tolerant clone, respectively. The stomatal conductance of the sensitive clone was more than 40 percent higher than that of the tolerant clone regardless of the $O_3$ treatment. As light intensity increased, the $O_3$ effect on photosynthesis was clear. Compared to the previous growth chamber studies, our natural light exposure system was able to maintain a stable photosynthetic responses of the control treatment throughout the fumigation period. In addition, changes in assimilation versus intercellular $CO_2$ concentration (A/C curves) showed that $O_3$ decreased the slope and asymptote of the curves for the sensitive clone. This indicates that $O_3$ decreases the biochemical capacity of photosynthesis on the sensitive clone. Chlorophyll contents and fluorescence of the two clones were analyzed to examine the $O_3$ effects on photosystem 11, but $O_3$ did not impact these variables on either clone. Although the tolerant clone did not show any foliar injury, we could not find any ecophysiological defensive responses to $O_3$ treated. Stomatal conductance of the tolerant clone was originally much lower than that of the sensitive one. Thus, the mechanisms of the tolerant clone in this system are to narrowly open stomata and efficiently maintain photosynthesis with a more durable biochemical apparatus of photosynthesis under $O_3$ stress. The sensitive clone has higher photosynthetic capacity and more efficient light reaction activity than the tolerant one under charcoal filtered condition, but is not as resilient under stress.

  • PDF