• Title/Summary/Keyword: foliar disease

Search Result 100, Processing Time 0.026 seconds

Fungicides for Dollar Spot Suppression on Creeping Bentgrass Greens (크리핑 벤트그래스 그린에서 동전마름병 방제)

  • Settle, Derek;Lee, Sang-Kook;Kane, Randy
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2011
  • Creeping bentgrass (Agrosis stolonifera L.) is regarded to be the most widely used cool-season turf grass species grown on golf greens and fairways in temperate climates of North America. Creeping bentgrass is highly susceptible to the fungal disease 'dollar spot' caused by Sclerotinia homoeocarpa. Dollar spot is a foliar disease favored by conditions of high humidity, warm days, and cool nights. Studies using Aliette Signature (Fosetyl Aluminum formulated with a green pigment) mixed with another broad-spectrum fungicide do not always provide additional visual quality benefits compared to the fungicide alone. The exact mechanism for improved summer visual quality, when it occurs, is not known. Fertility management and environment likely contribute. The object of this study is to evaluate fungicide strategies for control of dollar spot and effect on visual quality during summer and on an L-93/G-2 creeping bentgrass green. Nine fungicide combinations were used for this study. Disease control and visual quality by fungicides was evaluated on an established G-2/L-93 creeping bentgrass green at 3-hole Sunshine Golf Course in Lemont, IL. All fungicide combination showed excellent dollar spot suppression except Fore throughout the study. Visual quality of greens by addition of Aliette Signature is enhanced when bentgrass growth is compromised and slow. Dollar spot levels in Fore plots increased to 30% on 14 August, and was no different than untreated plots. Unacceptable quality by Fore was due to lack of dollar spot control.

Identification and Pathogenicity of Rhizoctonia species Isolated from Turfgrasses (잔디에서 분리한 Rhizoctonia spp.의 동정과 병원성)

  • Lee, Du-Hyung;Choe, Yang-Yun;Lee, Jae-Hong;Kim, Jin-Won
    • The Korean Journal of Mycology
    • /
    • v.23 no.3 s.74
    • /
    • pp.257-265
    • /
    • 1995
  • Morphological characteristics and pathogenicity of Rhizoctonia species causing blight diseases of turfgrasses were studied. The species were identified as Rhizoctonia cerealis Van der Hoeven, R. oryzae Ryker et Gooch, and R. solani $K{\ddot{u}hn}$ based on their morphological and cultural characteristics. Isolates of R. solani were assigned to anastomosis groups (AG) with cultural type 1 (1A), 2-2 (IIIB), and 2-2 (IV). R. cerealis, R. oryzae and R. solani induced sheath rot and foliar blight symptoms on creeping bentgrass (Agrostis palustris) and zoysiagrass (Zoysia japonica). Inoculation tests showed that disease severity with isolates of R. cerealis and R. oryzae were more serious to creeping bentgrass than zoysiagrass. AG 1(1A) isolates of R. solani were strongly pathogenic on creeping bentgrass, but moderate to zoysiagrass. AG 2-2 (III) isolates were moderately pathogenic to zoysiagrass, but weakly to creeping bentgrass. AG 2-2 (IV) isolates from zoysiagrass were moderately pathogenic to zoysiagrass, but weakly to creeping bentgrass.

  • PDF

Nature of a Root-Associated Paenibacillus polymyxa from Field-Grown Winter Barley in Korea

  • RYU CHOONG-MIN;KIM JINWOO;CHOI OKHEE;PARK SOO-YOUNG;PARK SEUNG-HWAN;PARK CHANG-SEUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.984-991
    • /
    • 2005
  • Soil or seed applications of plant growth-promoting rhizobacteria (PGPR) have been used to enhance growth of several crops as well as to suppress the growth of plant pathogens. In this study, we selected a PGPR strain, Paenibacillus polymyxa strain E681, out of 3,197 heat-stable bacterial isolates from winter wheat and barley roots. Strain E681 inhibited growth of a broad spectrum plant pathogenic fungi in vitro, and treatment of cucumber seed with E681 reduced incidence of damping-off disease caused by Pythium ultimum, Rhizoctonia solani, or Fusarium oxysporum. When inoculated onto seeds as vegetative cells or as endospores, E681 colonized whole cucumber root systems and root tips. Different temperatures such as $20^{\circ}C\;and\;30^{\circ}C$ did not affect root colonization by strain E681. This colonization was associated with a consistent increase in foliar growth of cucumber in the greenhouse. These results indicate that strain E681 is a promising PGPR strain for application to agricultural systems, particularly during the winter season.

Control of Crisphead Lettuce Damping-off and Bottom Rot by Seed Coating with Alginate and Pseudomonas aeruginosa LY-11

  • Heo, Kwang-Ryool;Lee, Kwang-Youll;Lee, Sang-Hyun;Jung, Soon-Je;Lee, Seon-Woo;Moon, Byung-Ju
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Seedling damping-off and bottom rot caused by Rhizoctonia solani are yield limiting diseases of crisphead lettuce. To provide biocontrol measure in the management of the diseases, biocontrol strain Pseudomonas aeruginosa LY-11 was isolated from lettuce rhizosphere and introduced into crisphead lettuce rhizosphere by the seed coating delivery method. Alginate was used as a coating material to generate beads containing $10^6-10^{6.5}$ colony-forming units (CFUs) of viable bacterial cells of LY-11. When seeds germinated from the alginate beads containing the strain LY-11, the bacteria established mostly in plant rhizosphere to maintain at least $10^4$ CFU per gram of plant tissues. Crisphead lettuce seedlings germinated from the entrapped seeds were less affected from damping-off and bottom rot with disease control values of 70.4% and 85.4% respectively. Although P. aeruginosa LY-11 colonized plant rhizosphere and not phyllosphere, the result indicated that bottom rot caused by the foliar inoculation of R. solani was effectively reduced by the rhizobacteria. All data suggested that immobilized rhizobacterial application in seeds by alginate coating could control damping-off and induce induced systemic resistance of crisphead lettuce to reduce bottom rot.

Effect of Chitosan, Wood Vinegar and EM on Microorganisms in Soil and Early Growth of Tomato (키토산, 목초액 및 EM 처리가 토양 미생물상의 변화 및 토마토의 초기생육에 미치는 영향)

  • Jeong, Soon-Jae;Oh, Ju-Sung;Seok, Woon-Young;Kim, Jeong-Han;Kim, Doh-Hoon;Chung, Won-Bok
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.4
    • /
    • pp.433-443
    • /
    • 2006
  • With treatment of Kitosan, Wood vinegear and EM(effective microoganism) which farmers call it as substance in fertilizing, conditioning and disease control substances, authors in vestigated on microorganisms change in soil and ealy growth characteristics of tomato. The results were summarized as follows: Among foliar application of kitosan, wood vinegear and EM(effective microoganism) treatments diluted by chitosan 500 times solution level was effective considering growth of tomato as compared other dilutions and control plot. Change of microorganism number in the soil for cultivation of tomato was increased with microorganism treatment plot as compared with control plot. Specially chitosan 500 times solution level showes the most significant effect.

  • PDF

Efficacy of Newer Molecules, Bioagents and Botanicals against Maydis Leaf Blight and Banded Leaf and Sheath Blight of Maize

  • Malik, Vinod Kumar;Singh, Manjeet;Hooda, Karambir Singh;Yadav, Naresh Kumar;Chauhan, Prashant Kumar
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.121-125
    • /
    • 2018
  • Maize (Zea mays L.; 2N=20) is major staple food crop grown worldwide adapted to several biotic and abiotic stresses. Maydis leaf blight (MLB) and banded leaf and sheath blight (BLSB) are serious foliar fungal diseases may cause up to 40% and 100% grain yield loss, respectively. The present studies were undertaken to work out the efficacy of chemicals, botanicals and bioagents for the management of MLB and BLSB under field condition for two seasons Kharif 2014 and 2015. Five molecules (propiconazole 25 EC, hexaconazole 25 EC, carbendazim 50 WP, mancozeb 75 WP and carbedazim 12 WP + mancozeb 63 WP), two bioagents i.e. Trichoderma harzianum and T. viridae and three botanicals namely azadirachtin, sarpagandha and bel pathar were tested for their efficacy against MLB. Eight newer fungicides viz., difenconazole 250 SC, hexaconazole 5 EC, carbendazim 50WP, validamycin 3 L, tebuconazole 250 EC, trifloxystrobin 50 WG + tebuconazole 50 WG, azoxystrobin 250 EC and pencycuron 250 SC were evaluated against BLSB. Analysis revealed significant effects of propiconazole at 0.1%, carbendazim 12 WP + mancozeb 63 WP at 0.125% and sarpagandha leaves at 10% against MLB pathogen, whereas validamycin at 0.1% and trifloxystrobin 25 WG + tebuconazole 50 WG at 0.05% were found effective against BLSB. The slow rate of disease control virtually by the bioagents might have not shown instant effect on plant response to the yield enhancing components. The identified sources of management can be used further in strengthening the plant protection in maize against MLB and BLSB.

Expression of Arabidopsis thaliana SIK (Stress Inducible Kinase) Gene in a Potato Cultivar (Solanum tuberosum L. 'Taedong Valley')

  • Yoon Jung-Ha;Fang Yi-Lan;Park Eung-Jun;Kim Hye-Jin;Na Yun-Jeong;Lee Dong-Hee;Yang Deok-Chun;Lim Hak-Tae
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 2005
  • Osmotic stress is one of major limiting factors in crop production. In particular, seasonal drought often causes the secondary disease in the field, resulting in severe reduction in both quality and productivity. Recent efforts have revealed that many genes encoding protein kinases play important roles in osmotic stress signal transduction pathways. Previously, the AtSIK (Arabidopsis thaliana Stress Inducible Kinase) mutants have shown to enhance tolerance to abiotic stresses, accompanying with higher expression of abiotic stress-related genes than did the wild-type plants. In this study, we have transformed potato (cv. Taedong Valley) with the AtSIK expression cassette. Both PCR and RT-PCR using AtSIK-specific primers showed stable integration and expression of the AtSIK gene in individual transgenic lines, respectively. Foliar application of herbicide ($Basta^{(R)}$) at commercial application rate (0.3% (v/v)) revealed another evidence of stable gene introduction of T-DNA which includes the bar gene for herbicide resistance. Overexpression of the AtSIK gene under dual CaMV35S promoter increased sensitivity to salt stress (300 mM NaCl), which was demonstrated by the reduction rate of chlorophyll contents in leaves of transgenic potato lines. These results suggest that possible increase of osmotic tolerance in potato plants may be achieved by antisense expression of AtSIK gene.

  • PDF

Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate

  • Mahmoud, Amer F.;Hassan, Mohamed I.;Amein, Karam A.
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.402-413
    • /
    • 2015
  • Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 <9 with an average of 7.29, which exceeded the Egyptian bread wheat cultivar Giza-168 (5.58). Thirty three RILs were included among the acceptable range having RRI value >2 <6. However, only 7 RILs showed RRI value <2. Five RILs expressed hypersensitive type of resistance (R) against the pathogen and showed the lowest Average Coefficient of Infection (ACI). Bulked segregant analysis (BSA) with eight simple sequence repeat (SSR), eight sequence-related amplified polymorphism (SRAP) and sixteen random amplified polymorphic DNA (RAPD) markers revealed that three SSR, three SRAP and six RAPD markers were found to be associated with the resistance to yellow rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.

Winter Wheat Grain Yield Response to Fungicide Application is Influenced by Cultivar and Rainfall

  • Byamukama, Emmanuel;Ali, Shaukat;Kleinjan, Jonathan;Yabwalo, Dalitso N.;Graham, Christopher;Caffe-Treml, Melanie;Mueller, Nathan D.;Rickertsen, John;Berzonsky, William A.
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Winter wheat is susceptible to several fungal pathogens throughout the growing season and foliar fungicide application is one of the strategies used in the management of fungal diseases in winter wheat. However, for fungicides to be profitable, weather conditions conducive to fungal disease development should be present. To determine if winter wheat yield response to fungicide application at the flowering growth stage (Feekes 10.5.1) was related to the growing season precipitation, grain yield from fungicide treated plots was compared to non-treated plots for 19 to 30 hard red winter wheat cultivars planted at 8 site years from 2011 through 2015. At all locations, Prothioconazole + Tebuconazole or Tebuconazole alone was applied at flowering timing for the fungicide treated plots. Grain yield response (difference between treated and non-treated) ranged from 66-696 kg/ha across years and locations. Grain yield response had a positive and significant linear relationship with cumulative rainfall in May through June for the mid and top grain yield ranked cultivars ($R^2=54%$, 78%, respectively) indicating that a higher amount of accumulated rainfall in this period increased chances of getting a higher yield response from fungicide application. Cultivars treated with a fungicide had slightly higher protein content (up to 0.5%) compared to non-treated. These results indicate that application of fungicides when there is sufficient moisture in May and June may increase chances of profitability from fungicide application.

Beet western yellows virus (BWYV): Aspect of Outbreak and Survey, and First Complete Genome Sequence of a Korea Isolate of BWYV

  • Park, Chung Youl;Kim, Jeong-Sun;Lee, Hong Kyu;Oh, Jonghee;Lim, Seungmo;Moon, Jae Sun;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.276-284
    • /
    • 2018
  • In 2010, foliar symptoms were observed in the paprika leaves in Jinju city, Korea. Beet western yellows virus (BWYV) was identified in paprika by using the large-scale oligonucleotide chip assay. To investigate the occurrence of BWYV, a survey was performed on various crops, including paprika, from 2011 to 2014. Further, the presence of BWYV was consistently verified through literature survey from 2015 to 2017. BWYV infection has been identified in Solanaceae crops (bell pepper, hot pepper, and paprika), various weeds, and green peach aphids and it occurs on a nationwide scale. Cultivation using organic methods involved natural enemies and showed a high BWYV infection rate, which was more than that for conventional cultivation methods in greenhouse. The complete genome sequence of BWYV isolated from paprika was determined for the first time. The genome of the BWYV-Korea isolate consists of 5750 nucleotides and has six open reading frames. Sequence identity results showed maximum similarity between the BWYV-Korea isolate and the BWYV LS isolate (identity > 90%). This study is the first report of BWYV infecting paprika in Korea. The survey revealed that BWYV is naturalized in the domestic ecology of Korea.