• Title/Summary/Keyword: fog

Search Result 719, Processing Time 0.031 seconds

Analysis on Vertical Structure of Sea Fog in the West Coast of the Korean Peninsula by Using Drone (드론을 활용한 한반도 서해 연안의 해무 연직구조 분석)

  • Jeon, Hye-Rim;Park, Mi Eun;Lee, Seung Hyeop;Park, Mir;Lee, Yong Hee
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.307-322
    • /
    • 2022
  • A drone has recently got attention as an instrument for weather observation in lower atmosphere because it can produce the high spatiotemporal resolution weather data even though the weather phenomenon is inaccessible. Sea fog is a weather phenomenon occurred in lower atmosphere, and has observational limitations because it occurs on the sea. Therefore, goal of this study is to analyze the vertical structures about inflow, development and dispersion of sea fog using the high-resolution weather data with the meteorological sensor-equipped drone. This study observed sea fogs in the west coast of the Korean peninsula from March to October 2021 and investigated one sea fog inflowed into the coast on June 8th 2021. θe - qv diagrams (θe: equivalent potential temperature, qv: water vapor ratio) and vertical wind structures were analyzed. At inflow of sea fog, moist adiabatically stable layer was formed in 0-300 m and prevailing wind was switched from south-southwesterly to west-southwesterly under 120 m. Both changes are favorable for sea fog on the location. θe and qv plummeted in a layer 0-183 m. The inflowed sea fog developed from 183 m to 327 m by mixing with ambient atmosphere on top of sea fog. Also, strong mechanical turbulence near ground drove a vertical mixing under stable layer. At dispersion of sea fog, as θe on ground gradually increased, air condition was changed to neutral. Evaporation occurred on both bottom and top in sea fog. These results induced dissipation of sea fog.

A real-time image-based sea fog observation system based on local lighthouse (항로표지 거점을 활용한 실시간 영상기반 해양안개 관측시스템 구축)

  • Mookun Kim;In-kwon Jang;Hyeong-ui Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.23-26
    • /
    • 2023
  • In the past, in observing the sea fog on the major sea route and providing real-time information for the safe operation of ships, a visibility sensor or a fog detector with similar operating principles was installed to observe local fog near the place where it was installed. However, it was somewhat unreasonable to immediately provide sea fog observation information to ships and users because the reliability of real-time observation information was somewhat low due to pollution caused by dust, salt, and pollen, or malfunctions of detection sensors by organisms such as spider webs. From 2019 to 2022, the Korea Meteorological Administration and the Ministry of Oceans and Fisheries collaborated to build a more reliable real-time image-based sea fog observation system in 100 regions of the Lighthouse on major sea routes across the country to collect reliable sea fog observation information every 10 minutes and perform real-time public service(webpage).

  • PDF

Sea fog detection near Korea peninsula by using GMS-5 Satellite Data(A case study)

  • Chung, Hyo-Sang;Hwang, Byong-Jun;Kim, Young-Haw;Son, Eun-Ha
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.214-218
    • /
    • 1999
  • The aim of our study is to develop new algorism for sea fog detection by using Geostational Meteorological Satellite-5(GMS-5) and suggest the techniques of its continuous detection. So as to detect daytime sea fog/stratus(00UTC, May 10, 1999), visible accumulated histogram method and surface albedo method are used. The characteristic value during daytime showed A(min) > 20% and DA < 10% when visble accumulated histogram method was applied. And the sea fog region which detected is of similarity in composite image and surface albedo method. In case of nighttime sea fog(18UTC, May 10, 1999), infrared accumulated histogram method and maximum brightness temperature method are used, respectively. Maximum brightness temperature method(T_max method) detected sea fog better than IR accumulated histogram method. In case of T_max method, when infrared value is larger than T_max, fog is detected, where T_max is an unique value, maximum infrared value in each pixel during one month. Then T_max is beneath 700hpa temperature of GDAPS(Global Data Assimilation and Prediction System). Sea fog region which detected by T_max method was similar to the result of National Oceanic and Atmosheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) DCD(Dual Channel Difference). But inland visibility and relative humidity didn't always agreed well.

  • PDF

Comparative Research of Fog Using the Regular Observation and GPS Integrated Water Vapor (정규관측자료와 GPS 연직누적 수증기량을 이용한 안개에 대한 비교연구)

  • Lee, Jaewon;Cho, Jungho;Baek, Jeongho;Park, Jong-Uk;Park, Chieup
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.417-427
    • /
    • 2008
  • In this paper, we analyzed the physical and thermodynamic characteristics of fog by using the integrated water vapor (IWV) from Global Positioning System (GPS) networks and the regular observation data of meteorological stations in GPS sites. The cases of a radiation and an advection fog were selected as samples, the conversions of water substance from the water vapor to cloud water in fog were detected by the Bulk Water-Continuity Model, and the pattern analysis is adapted on GPS IWV, temperature, wind and relative humidity. Under the specific hypothesis (saturation and stable), GPS IWV could detect quantitatively the phase changing between the water vapor and cloud water content with condensation/evaporation during the formation and dissipation of fog. After it reaches to the saturation, the relative humidity can be a limited indicator for fog. However, GPS IWV can detect the status change of fog even after the saturation. It has indicated that GPS IWV could be a new observing technique for the processes of the fog formation and the dissipation.

A Study on Chemical Features of Fog Sample in Summer at Mt. Sobaek (하계 소백산 안개의 화학적 특성에 관한 연구)

  • 최재천;이민영;이선기;남재철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.399-406
    • /
    • 1996
  • Acidic fog is catastrophic to aviation and potentially affect materials, vegetation, crops and public health. This paper was carried out to investigate the chemical features of fog sample at Mt. Sobaek (mean sea level : 1, 340m) from June to August 1995. Each sample was analyzed for pH, electrical conductivity and major ions (anion : $Cl^N)_3^-, SO_4^{2-}, cation : Na^+, NH_4^+, K^+, Mg^{2+}, Ca^{2+}$) by ion chromatography. The quality analysis of fog sample data was performed based on ion balance and electrical conductivity method. The wind directions are subdivided into the northerly and southerly wind according to the wind direction data at the Sobaek-san meteorological observation station. Statistical analyses were performed on the complete set of results in order to obtain a description of fog sample. All the statistical treatment was carried out using the SPSS/PC + software package. The major ion concentration of fog samples was higher for the northwesterly wind cases than sourtheasterly wind cases. The pH of fog sample varied between 2.95 and 6.08. The average pH and electrical conductivity of total sample (n=210) were 4.39 and 113.0 $\mu$S/cm, respectively. It may be noted that in nearly all the cases, the dominant major ions in the fog sample at Mt. Sobaek were $SO_4^{2-}, NO_3^-, H^+ and NH_4^+$.

  • PDF

Development of a fog Frequency Estimation Model at Expressway (고속도로 안개발생 빈도추정 모형 개발)

  • Park, Jun-Tae;Lee, Soo-Beom;Lee, Soo-Il
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.127-134
    • /
    • 2011
  • A traffic accident which happens in Expressway during dense fog is more likely to cause the sequential accidents and high death rate. So, the preventive measures shall be taken at dangerous areas to enhance the efficiency of roads and minimize the accidents and the resultant damages. So, it is necessary to find out the characteristics of freeway zone which has high risk of fog occurrence and to establish the comprehensive safety strategy on installation and operation of the safety equipment. In this study, I developed a fog forecasting model by using the freeway fog data. This model can be used as the fog forecasting model in dealing with fog problems when new road is planned. The model was developed by using a statistical analysis technique or the regression analysis, focusing on the variables such as geographical features and regional conditions, distances to water sources and the area of water source. I have segmented the models by classifying the area into inland area and coastal area. The distance to water source and area of the water source located around the freeway were found to be main factors causing fog.

A Study on Visualization of Fine Dust Captured by FOG Droplet (미세액적에 의한 미세먼지 포집 가시화 연구)

  • Oh, Jinho;Kim, Hyun Dong;Lee, Jung-Eon;Yang, Jun Hwan;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.39-45
    • /
    • 2021
  • An experiment to visualize fine dust captured by FOG droplet is conducted. Coal dust with 23.56 MMD (Mean Median Diameter) and water with 17.02 MMD is used as fine dust and FOG droplet. Long distance microscope and high-speed camera are used to capture the images of micro-scale particles sprinkled by acrylic duct. After measuring and comparing the size of the coal dust and FOG droplet to MMD, process to seize the coal dust with FOG droplet is recorded in 2 conditions: Fixed and Floated coal dust in the floated FOG droplet flow. In both conditions, a coal dust particle is collided and captured by a FOG droplet particle. A FOG droplet particle attached at the surface of the coal dust particle does not break and remains spherical shape due to surface tension. Combined particles are rotated by momentum of the particle and fallen.

Smart Fog : Advanced Fog Server-centric Things Abstraction Framework for Multi-service IoT System (Smart Fog : 다중 서비스 사물 인터넷 시스템을 위한 포그 서버 중심 사물 추상화 프레임워크)

  • Hong, Gyeonghwan;Park, Eunsoo;Choi, Sihoon;Shin, Dongkun
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.710-717
    • /
    • 2016
  • Recently, several research studies on things abstraction framework have been proposed in order to implement the multi-service Internet of Things (IoT) system, where various IoT services share the thing devices. Distributed things abstraction has an IoT service duplication problem, which aggravates power consumption of mobile devices and network traffic. On the other hand, cloud server-centric things abstraction cannot cover real-time interactions due to long network delay. Fog server-centric things abstraction has limits in insufficient IoT interfaces. In this paper, we propose Smart Fog which is a fog server-centric things abstraction framework to resolve the problems of the existing things abstraction frameworks. Smart Fog consists of software modules to operate the Smart Gateway and three interfaces. Smart Fog is implemented based on IoTivity framework and OIC standard. We construct a smart home prototype on an embedded board Odroid-XU3 using Smart Fog. We evaluate the network performance and energy efficiency of Smart Fog. The experimental results indicate that the Smart Fog shows short network latency, which can perform real-time interaction. The results also show that the proposed framework has reduction in the network traffic of 74% and power consumption of 21% in mobile device, compared to distributed things abstraction.

A Study on Reduction Effect of White Smoke Fog in Urban Detention Basin using a Fog Removal System (안개제거장치를 이용한 도심 저류지 시설에서의 안개 저감 효과 연구)

  • Lee, Kyu Hong;Lee, Sang Woo;Choi, Jun Sung;Lee, Sung Kyun;Park, Jihwan;Park, Seunghee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.69-74
    • /
    • 2018
  • Fog to which environmental impacts are sensitive has a danger to the safety of citizens due to the difficulty in predicting the specific area/time zone. Therefore, we propose a white smoke fog reduction technique using a fog removal device that can remove fog particles directly through dry air and anionic condensation nucleus instead of conventional passive countermeasures. In this study, to verify the effect of reducing fog and the effect of temperature on the white smoke fog which is frequently occurred in the detention basin. As a result, the visible distance of 100m or more was secured within 30 seconds, and it was confirmed that the fog reduction effect is more effective. Also, the lower the temperature, the larger the amount of white smoke fog was. However, the effect of reducing the white smoke fog by temperature was insignificant. Through this experiment, it was possible to verify the reduction effect of the white smoke fog generated in the detention basin through fog removal device.

A Study on the Re-establishment of Selection Criterion on the Frequency of Foggy Area in Highway (고속도로 안개 잦은 구간 선정 기준 재정립에 관한 연구)

  • Jung, Sung-Hwa;Lee, Soo-Beom;Park, Jun-Tae;Lee, Soo-Il;Hong, Ji-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • There is a high potentiality of large traffic accident due to the dense fog when road is developed along the coast or river. The establishment of national level control system against the fog is necessary because the accident due to the creation of fog has a high fatality ratio than other weather conditions. The selection method for the frequent foggy area on highway was suggested to control the fog on the highway effectively because the establishment of the countermeasure against the fog in every range in highway is difficult practically. 44 ranges where the fog control is necessary throughout the year and the 45 ranges where the control is necessary in specific months were selected from the result of application of the weighted value on each visible distance data except the fog with beyond 250 m visible distance which does not affect on the safe driving out of the surveyedjsh fog visible distances. The preferential fog control countermeasure shall be provided to prevent the traffic accident and to reduce the severeness of the accident in case of fog creation for 89 ranges which were selected for frequent foggy area in highway.