• Title/Summary/Keyword: foam system

Search Result 374, Processing Time 0.022 seconds

A Study on Fire Extinguishing Performance Evaluation of Compressed Air Foam System (압축공기포 소화설비의 소화성능 평가에 관한 연구)

  • Lee, Jang-Won;Lim, Woo-Sub;Kim, Sung-Soo;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.73-78
    • /
    • 2012
  • This research is to evaluate the fire extinguishing performance of Compressed Air Foam System and this test was conducted using Foam Head System. Compressed Air Foam System adopt the methods of causing the foam by mixing compressed air in foam-aqueous solution, In Overseas, CAFS (Compressed Air Foam System) is generally used because long distance discharge is possible and the water damage can be minimized by reducing the water usage. In this study, Comparative analysis on fire extinguishing effect is done through test to compare the performance between Foam System applied existing air mixture method and Compressed Air Foam System applied AFFF 3 %, foam-extinguishing-agent based on UL162 standard. In Compressed Air Foam System, the volume proportion of air mixture to foam-aqueous solution is 1 to 1 and discharging flow rate is 140 L/min, 160 L/min, 180 L/min, 200 L/min each. As a result of the test, in terms of fire extinguishing performance, fire suppression time for Compressed Air Foam Systems is shorter than for General Air Mixture System in all flow conditions.

A Study on Foam Formation of Slag-Quartz-$Na_2$$CO_3$ System (Slag-Quartz-$Na_2$$CO_3$계의 Foam형성에 관한 연구)

  • 박현수;김종희;천성순
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.3
    • /
    • pp.21-27
    • /
    • 1976
  • Foam formation of Slag-Quartz-$\textrm{Na}_2\textrm{CO}_3$ system was investigated. The foaming agent used was sulphide and sulphate compounds which are present in the slag. The microstructures and x-ray analysis of foam slag, the effect of composition and particle size of slag on the formation temperature, and foam size and distribution of slag foam were studied. The Increment of $\textrm{Na}_2\textrm{O}$ in the slag batch composition decrease the initial foam formation temperature and enhance the foam growth. The formation of temperature and soaking time had pronounced effect on the foam growth and increasing the glass phase in the slag foam.

  • PDF

Performance of a Foam Fractionator in a Lab-scale Seawater Recirculating Aquaculture System

  • Peng Lei;Jo Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.4
    • /
    • pp.187-193
    • /
    • 2003
  • The performance of a foam fractionator to remove TAN, $NO_2,\;NO_3$, TSS, protein, and $PO_4-P$ at different superficial air velocities and foam overflow heights was evaluated in a lab-scale seawater recirculating system for culture of Korean rockfish (Sebastes schlegeli). The foam overflow rates increased with the increase of superficial air velocities, but decreased with the increase of foam overflow heights. Concentrations of all the water quality variables in the foam condensates increased with the increase of foam overflow height, but decreased with the increase of superficial air velocities. TSS, protein, and phosphate enrichment factors were within the range of 6.4-39.4, 1.6-7.3 and 1.2-3.9, respectively. Low values of TAN, $NO_2,\;and\;NO_3$ enrichment factors were obtained and they indicate that foam fractionation is rot an effective way to remove dissolved inorganic nitrogen. The calculated maximum daily removal values for TSS and protein were 10.9 and 1.4g, respectively.

Removal of Total Suspended Solids by a Foam Fractionator in a Simulated Seawater Aquaculture System

  • Peng, Lei;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.16 no.4
    • /
    • pp.216-222
    • /
    • 2003
  • In a simulated seawater aquaculture system, effects of different operating factors like the superficial air velocity (SAY), hydraulic residence time (HRT), protein concentration and foam overflow height on the removal of total suspended solids (TSS) by a foam fractionator, with 20 cm diameter and 120 cm height, were investigated. This experiment was performed on batch and consecutive modes for different combinations of the tested factors, using synthetic wastewater. In 5 consecutive trials, TSS concentration in culture tank water decreased faster, when the foam fractionator was operated at higher SAV and lower HRT. In batch trials, with increasing SAV, TSS removal rate increased, but decreased with increasing HRT. Higher protein concentration in the bulk solution resulted in higher TSS removal rate. TSS concentration in the collected foam condensates increased but the foam overflow rate decreased with increasing foam overflow height. Foam fractionation was effective for removing TSS in seawater aquaculture systems and its performance largely depended on the operating parameters, especially superficial air velocity.

Protein Removal by a Foam Fractionator in Simulated Seawater Aquaculture System

  • Peng, Lei;Oh, Sung-Yong;Jo, Jae-Yoon
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.269-275
    • /
    • 2003
  • Effects of different operating factors including superficial air velocity (SAV), hydraulic residence time (HRT), protein concentration, and foam overflow height on protein removal by a foam fractionator in simulated seawater aquaculture system were investigated. This experiment was conducted on batch and consecutive modes at different combinations of the affecting factors. The foam fractionator had a diameter of 20cm and a height of 120cm and the experiment was conducted with synthetic wastewater. In 5 consecutive trials, protein concentrations in culture tank water decreased faster when the foam fractionator was operated at higher SAVs and lower HRTs. In batch trials, protein removal rates increased with an increase in SAV but decreased with an increase in URT. Higher protein concentrations in the bulk solution resulted in higher protein removal rates. Protein concentrations in the collected foam condensates increased but the foam overflow rates decreased with the increase of foam overflow heights. The results of this experiment indicate that foam fractionation would be an effective way for protein removal in seawater aquaculture systems and the performance of the foam fractionator depends largely on the operating parameters, especially SAV.

Characteristics of Protein Foam Agent by Stabilizer on the Ship Fire Extinguishment (선박화재 적용 단백포 소화약제의 안정제에 따른 소화특성)

  • Lee, Eungwoo;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.79-85
    • /
    • 2015
  • Onboard fire extinguishing system is important to protect cargo and human lives and every oil tanker has foam type fire extinguishing system. Because of environmental problem, agent which contains materials such as Perfluorinated compounds are regulated and the development of the environmental friendly agent is required. The protein foam has less environmental pollution problem and has an excellent fire extinguish performance to oil fire. In the research, bivalency metal salts were added as stabilizer to increase fire resistance and stability of the foam. Ferrous sulfate, Iron chloride and Nickel chloride were used and to adjust to vessel, sea water was applied. As a stabilizer increased, the expansion ratio was raised. However 25% drainage time was decreased over 2.0 wt.% which is knowable that the foam brokes easily. The amount of generated foam was measured to check fluidity of foam and it appeared that when $FeSO_4$ 1.2 wt.% was added, the amount of generated foam reached large and also the 25% drainage time was high. To evaluate the fire extinguishing performance for oil fire, the small scale oil fire test was executed. When $FeSO_4$ 1.2 wt.% was added, fire extinguishing time was in its shortest which informs fluidity of foam and stability are important factors on fire extinguishing efficiency.

Performance of foam fractionator in seawater recirculating system

  • Lei Peng;Jo, Jae-yoon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.221-222
    • /
    • 2003
  • Typically, closed production system units are subject to an accumulation of fine suspended solids and dissolved organics (Weeks et at., 1992). Foam fractionation process is believed to be most effective in marine application for solids removal. In present experiment, the performance of foam fractionator for removal of solids, protein, and other dissolved materials was evaluated at different foam overflow heights and air flow rates in a pilot-scale recirculating aquaculture system for culture of Korean rockfish. (omitted)

  • PDF

Cryogenic Machining of Open-Cell Silicone Foam (액화질소를 이용한 오픈 셀 실리콘 폼의 냉동 절삭조건 최적화)

  • Hwang, Jihong;Cho, Kwang-Hee;Park, Min-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • Open-cell silicon foam is difficult to cut using conventional machining processes because of its low stiffness. That is, open-cell silicon foam is easily pressed down when the tool is engaged, which makes it difficult to remove the material in the form of chip. This study proposes an advanced method of machining open-cell silicon foam by freezing the material using liquid nitrogen. Furthermore, the machining conditions are optimized to maximize the efficiency of material removal and minimize the usage of liquid nitrogen by conducting experiments under various machining conditions. The results show that open-cell silicone foam products with free surface can be successfully machined by employing the proposed method.

Formation of Spheroids of Adult Rat Primary Hepatocytes in Polyurethane Foam (폴리우레탄 폼을 이용한 쥐 일차 간세포의 구상체 배양)

  • 안재일;이두훈
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.215-224
    • /
    • 1998
  • This paper is fundamental study to develope the extracorporeal liver support system for patient with fulminant hepatic failure(FHF) or being expected for orthotopic liver transplantation. The polyurethane foam, which is composed of the density of 33kg/m3, the average pore diameter of 500${\mu}{\textrm}{m}$, the closed window of 60-70%, was manufactured with the prepolymer of 15% NCO-, Hepatocytes were inoculated to form spheroids in polyurethane foam. The time of spheroid formation in BSA(Bovine Serum Albumin) coated polyurethane foam was shorter than that in raw polyurethane foam. To verify the function of hepatocyte spheroids, we measured ammonia removal rate, urea and albumin secretion rate. Polyurethane foam was suitable for culture of hepatocyte spheroids. And culture of hepatocyte spheroids in polyurethane foam has high possibility in using as an extracorporeal liver support system.

  • PDF

An oil-tolerant and salt-resistant aqueous foam system for heavy oil transportation

  • Sun, Jie;Jing, Jiaqiang;Brauner, Neima;Han, Li;Ullmann, Amos
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.99-108
    • /
    • 2018
  • An oil-tolerant and salt-resistant aqueous foam system was screened out as a possible lubricant to enable cold heavy oil transportation. The microstructures and viscoelasticity and effects of heavy oil, salt and temperature on the foam stability were investigated and new rheological and drainage models were established. The results indicate the foam with multilayered shells belongs to a special microcellular foam. The viscoelasticity could be neglected due to its low relaxation time. The drainage process can be divided into three stages. The foam with quality of 67.9% maintains great stability at high oil and salt concentrations and appropriate elevated temperature.