• Title/Summary/Keyword: foam sandwich

Search Result 128, Processing Time 0.02 seconds

Research on three-point bending fatigue life and damage mechanism of aluminum foam sandwich panel

  • Wei Xiao;Huihui Wang;Xuding Song
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Aluminum foams sandwich panel (AFSP) has been used in engineering field, where cyclic loading is used in most of the applications. In this paper, the fatigue life of AFSP prepared by the bonding method was investigated through a three-point bending test. The mathematical statistics method was used to analyze the influence of different plate thicknesses and core densities on the bending fatigue life. The macroscopic fatigue failure modes and damage mechanisms were observed by scanning electron microscopy (SEM). The results indicate that panel thickness and core layer density have a significant influence on the bending fatigue life of AFSP and their dispersion. The damage mechanism of fatigue failure to cells in aluminum foam is that the initial fatigue crack begins the cell wall, the thinnest position of the cell wall or the intersection of the cell wall and the cell ridge, where stress concentrations are more likely to occur. The fatigue failure of aluminum foam core usually starts from the semi-closed unit of the lower layer, and the fatigue crack propagates layer by layer along the direction of the maximum shear stress. The results can provide a reference for the practical engineering design and application of AFSP.

Study on Preliminary Structural Design of Light Weight Small Scale WIG Craft (경량화 소형 위그선 구조 예비 설계에 관한 연구)

  • Kong, Changduk;Park, Hyunbum;Kim, Juil;Lee, Seunghyeon;Yun, Jae-Hwi
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.36-44
    • /
    • 2007
  • This study was performed on preliminary structural design of a small scale WIG craft which has been developed as a next generation high speed maritime transportation system in Korea. A composite structure design using the foam-sandwich for main wing and tail fins and the honeycomb sandwich and skin-stringer-ring frame for fuselage was applied for weight reduction as well as structural stability. A commercial FEM code, NASTRAN for was utilized to confirm the structural safety for the reiterate design modifications to meet design requirements including the target weight. Each main wing was jointed with the fuselage by eight high strength insert bolts for easy assembling and disassembling as well as for assuring the required 20 years service life. For control surface structural design, the channel type spar, the foam sandwich skin and the lug joint were adopted.

  • PDF

Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads

  • Rashad, Mohamed;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.717-725
    • /
    • 2018
  • One of the most important design criteria in military tunnels and armoured doors is to resist the blast loads with minimum structural weight. This can be achieved by using steel sandwich panels. In this paper, the nonlinear behaviour of steel sandwich panels, with different core materials: (1) Hollow (no core material); (2) Rigid Polyurethane Foam (RPF); and (3) Vulcanized Rubber (VR) under free air blast loads, was investigated using detailed 3D nonlinear finite element models in Ansys Autodyn. The accuracy of the finite element model proposed was verified using available experimental test data of a similar steel sandwich panel tested. The results show the developed finite element model can be reliably used to simulate the nonlinear behaviour of the steel sandwich panels under free air blast loads. The verified finite element model was used to examine the different parameters of the steel sandwich panel with different core materials. The result shows that the sandwich panel with RPF core material is more efficient than the VR sandwich panel followed by the Hollow sandwich panels. The average maximum displacement of RPF sandwich panel under different ranges of TNT charge (1 kg to 10 kg at a standoff distance of 1 m) is 49% and 53% less than the VR and Hollow sandwich panels, respectively. Detailed empirical design equations were provided to quantify the maximum deformation of the steel sandwich panels with different core materials and core thickness under a different range of blast loads. The developed equations can be used as a guide for engineer to design steel sandwich panels with RPF and VR core material under a different range of free air blast loads.

Study on Impact Damage Behavior of Sandwich Composite Structure for aircraft (항공기 적용 샌드위치 복합재 구조의 충격 손상 거동 연구)

  • Park, Hyunbum;Kong, Changduk
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this study, low velocity impact analysis on composite sandwich structure was performed. Sandwich structure configuration is made of Carbon-Epoxy face sheets and foam cores. For validating study, the results of an experimental and a finite element method analysis were compared previously. From the finite element method analysis results of sandwich panel, it was confirmed that the results of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using finite element method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity. Finally, The comparison of the numerical results with those measured by the experiment showed good agreement.

Influence of Design Variables on Failure Loads of Sandwich Beam (설계변수에 대한 샌드위치 보의 파손하중)

  • Jongman Kim
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.18-24
    • /
    • 2003
  • Sandwich structures have been widely used in the applications of vessel industry, where high structural stiffness is required with small addition of weight. It is so significant to think of the effect of the variables in the design process of the sandwich structure for the concentrated loads. This paper describes the influence of design variables, such as core density, core thickness and face thickness ratio, on the strength of sandwich beam. The theoretical failure loads based on the 2-D elasticity theory agree well with the experimental yield or failure loads, which are measured at the three point bending laboratory test using AS4/3501-6 facing and polyurethane foam core sandwich beam. The comparison of those yield or failure loads was also done with the ratio of the top to bottom face thickness. The theoretical optimum condition is obtained by finding the intersection point of failure modes involved, which gives optimum core density of the sandwich beam for strength and stiffness. In the addition, the effect of unequal face thickness for the optimized and off-optimized sandwich beams for the strength was compared with the ratio of loading length to beam length, and the variations of strength and stiffness were discussed with the relative ratio of core to face mass.

Parametric Study on Design of Composite-Foam Sandwich Structures for Micro EDM Machine tool structures (미세 방전가공 기계 구조를 위한 복합재료-포움 샌드위치 구조 설계에 관한 파라메트릭 연구)

  • Kim Dae-Il;Chang Seung-Hwan
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, parametric study was carried out to design sandwich structures for EDM machines controlling stacking sequence, stacking thickness of composites and rib configuration. Sandwich structures which are dealt with in this paper are composed of fibre reinforced composite for skin material and foam or resin concrete for core materials. The sandwich column has cruciform rib to enhance bending stiffness of the structure and the bed has several vertical ribs to resist the normal forces and vibration. The design parameters such as rib thickness and stacking sequence were controlled to enhance the system robustness. Finite element analysis was also carried out to verify the variation of static and dynamic stiffness of the structures according to the variation of the parameters. Vibration tests were performed to verify the natural frequencies and damping ratios of the manufactured composite structures. The appropriate shape and configuration conditions for micro-EDM machine structures are proposed.

Effects of Stitching Thread on Fatigue Characteristics of Polyurethane foam Cored Sandwich Structure (우레탄 폼 코아 샌드위치 구조물의 피로특성에 미치는 스티칭 사의 영향)

  • 김재훈;이영신;박병준;김영기;김덕회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.71-75
    • /
    • 2000
  • The effects of stitching thread on fatigue characteristics of polyurethane foam cored sandwich structures are investigated. Fatigue test and static test, being used in four point bending test, are performed with various diameters and distances of stitching thread. The Results show that the maximum load for bending tests is similar to each other, but after $1O^6$ fatigue cycles, the stiffness degradation of the stitching thread diameter $\emptyset$ 3mm specimen is a much larger than that of the $\emptyset$ 5mm specimen.

  • PDF

A Study of Edgewise Compression and Flatwise Shear Test to Sandwich Structure (샌드위치구조의 Edgewise압축실험과 Flatwise 전단실험에 대한 연구)

  • 김익태
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.35-41
    • /
    • 1996
  • This paper is aimed to solve local buckling problem that can frequently occur when the high speed ship's hull of sandwich structural type is crushed by rarbour and cargo. Experiment is performed on 36 specimens cut of 4-plates that made of sandwich type(Kevlar-Epoxy, Klegecell foam) and 16-Edgewise compressive test specimen, 16-Flatwise test specimen were tested by A.S.T.M. test method. The result of this study is analyzed and compared in test method and test jig to perorm Edgewise compressive test and Flatwise test.

  • PDF

Test and Evaluation Procedure of Foam Core Materials for Composite Ships

  • Jang, Jae-Won;Jeong, Sookhyun;Oh, Daekyun;Cho, Je-Hyoung;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.286-296
    • /
    • 2020
  • Sandwich structures are general-purpose structures that can reduce the structural weight of composite ships. Core materials are essential for these structures, with polyvinyl chloride (PVC) foams being the most popular. These foam core materials are subjected to various tests in the development process, and must satisfy the performance requirements of several ISO and ASTM standards. Therefore, a procedure for evaluating the performance of foam core materials was proposed in this paper. In addition, prototypes were fabricated using a commercial PVC foam core product in accordance with the structural design of an 11 m fiber-reinforced plastic yacht. Then, a case study was conducted on the proposed evaluation procedure. The proposed procedure facilitates the understanding of the performance requirements and evaluation of core materials used in composite ships and is expected to be utilized in developing core materials for marine structures.

Effects of face-sheet materials on the flexural behavior of aluminum foam sandwich

  • Xiao, Wei;Yan, Chang;Tian, Weibo;Tian, Weiping;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.301-308
    • /
    • 2018
  • Properties of AFS vary with the changes in the face-sheet materials. Hence, the performance of AFS can be optimized by selecting face-sheet materials. In this work, three types of face-sheet materials representing elastic-perfectly plastic, elastic-plastic strain hardening and purely elastic materials were employed to study their effects on the flexural behavior and failure mechanism of AFS systematically. Result showed face-sheet materials affected the failure mechanism and energy absorption ability of AFS significantly. When the foam cores were sandwiched by aluminum alloy 6061, the AFS failed by face-sheet yielding and crack without collapse of the foam core, there was no clear plastic platform in the Load-Displacement curve. When the foam cores were sandwiched by stainless steel 304 and carbon fiber fabric, there were no face-sheet crack and the sandwich structure failed by core shear and collapse, plastic platform appeared. Energy absorption abilities of steel and carbon fiber reinforced AFS were much higher than aluminum alloy reinforced one. Carbon fiber was suggested as the best choice for AFS for its light weight and high performance. The versus strength ratio of face sheet to core was suggested to be a significant value for AFS structure design which may determine the failure mechanism of a certain AFS structure.