• Title/Summary/Keyword: flyback converter

Search Result 335, Processing Time 0.02 seconds

Cascaded H-bridge Multilevel Inverter employing Front-end Flyback Converter with Single Independent DC Voltage Source

  • Kim, Ki-Du;Bae, Gyou-Tak;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.197-201
    • /
    • 2013
  • Cascaded H-bridge multilevel inverter requires independent DC voltage sources to produce multi output voltage levels. When it needs to generate more levels in the output voltage wave, the number of independent DC voltage sources usually limits its extension. To solve this problem, we propose a cascaded H-bridge multilevel inverter employing a front-end flyback converter for unifying input DC voltage sources. After theoretical analysis of the proposed circuit, we verify the validity of the proposed inverter using computer-aided simulations and experiments.

High-efficiency 400W Module Integrated Converter for PV applications (고효율 400W급 태양광 Module Integrated Converter 개발)

  • Lee, Sung-Ho;Kim, Soo-A;Kim, Min-Sung;Goo, Tae-Hong;Kim, Soo-Hong;Choi, Jung-Hwan;Huh, Dong-Young;Kwon, Bong-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.289-290
    • /
    • 2015
  • 본 논문에서는 고효율, 저가격의 400W급 태양광 Module Integrated Converter (MIC)를 소개한다. 제안하는 MIC는 Interleaved flyback 토폴로지를 기반으로, 계통 주기 내에서 DCM과 CCM의 모든 동작 영역을 활용할 수 있게 설계되어 도통 손실 및 전력 용량을 개선한다. 또한 새로운 출력 제어 전류 알고리즘을 통해 기존의 Flyback의 CCM 영역에서의 제어문제를 해결하여 개발된 Flyback MIC의 실효성을 획득한다. 최종적으로 400W급 시제품을 제작하여 타당성 검증 및 결과를 제시한다.

  • PDF

Drive Circuit for Switched Reluctance Motor with Flyback Transformer (Flyback Transformer를 갖는 Switched Reluctance Motor의 구동회로)

  • Lim, J.Y.;Cho, K.Y.;Baik, I.C.;Shin, D.J.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.833-836
    • /
    • 1993
  • A flyback type power converter circuit for switched reluctance motor drives is presented. In this converter circuit, the energy extracted from an off going phase is stored in an additional capacitor. The energy stored is used to either be returned to the source frequently or energize the conducting phase during the conduction interval through the transformer. The additional switch to pass the energy stored in the capacitor to the source or the conducting phase is switched under a relatively low voltage condition. Its switching frequency is relatively high so that the size of the transformer can be reduced. The design guideline for the capacitor and the transformer is described. The effectiveness of the presented converter circuit is compared to other circuits through the analysis and experiment.

  • PDF

Design of Gate Driver Power Supply for 3-Phase Inverter Using SiC MOSFET (SiC MOSFET를 사용한 3상 인버터용 게이트 드라이버 전원 설계)

  • Lee, Sangyong;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.429-436
    • /
    • 2021
  • The design of a gate driver power supply for a three-phase inverter using a silicon carbide (SiC) MOSFET. The requirements for the power supply circuit of the gate driver for the SiC MOSFET are investigated, and a flyback converter using multiple transformers is used to make the four isolated power supplies. The proposed method has the advantage of easily constructing the power supply circuit in a limited space as compared with a multi-output flyback converter using a single core. The power supply circuit for the three-phase SiC MOSFET inverter for driving an AC motor is designed and implemented. The operation and validity of the implemented circuit are verified through simulations and experiments.

Analysis and Design of Transformer Windings Schemes in Multiple-Output Flyback Auxiliary Power Supplies with High-Input Voltage

  • Meng, Xianzeng;Li, Chunyan;Meng, Tao;An, Yanhua
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1122-1132
    • /
    • 2019
  • In this paper, aiming at high-voltage applications, transformer windings schemes of multiple-output two-transistor flyback converters are investigated, which are mainly based on the stray capacitances effect. First, based on a transformer model including equivalent stray capacitors, the operational principle of the converter is presented, and the main influence of its stay capacitors is determined. Second, the windings structures of the transformer are analyzed and designed based on the stray capacitances effect. Third, the windings arrangements of the transformer are analyzed and designed through a coupling analysis of the secondary windings and a stray capacitance analysis between the primary and secondary windings. Finally, the analysis and design conclusions are verified by experimental results obtained from a 60W laboratory prototype of a multiple-output two-transistor flyback converter.

A study on the characteristics of high power factor AC/DC converter with Feedforward control (Feedforward 제어에 의한 고역률 AC/DC 컨버터의 톡성분석)

  • Kim, Cherl-Jin;Jang, Jun-Young;Yoo, Byeong-Ku;Sin, Seung-Soo;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1244-1246
    • /
    • 2003
  • Conventional Switched Mode Power Supplies(SMPS) with diode-capacitor rectifier have distorted input current waveform with high harmonic content. Typically, these SMPS have a power factor lower than 0.65. To improve with this problem. the power factor correction(PFC) circuit of power supplies has to be introduced. Specially, to reduce size and manufacture cost of power conversion device, the single-stage PFC converter is increased to demand as necessary of study. In this case single-stage PFC converter has been used DC-DC converter with boost converter. However in this paper, it is studied flyback converter of high power factor, high efficiency by feedforward control. Also, the validity of designed and manufactured high power factor flyback converter is confirmed by simulation and experimental results.

  • PDF

Optimal Design of GaN-FET based High Efficiency and High Power Density Boundary Conduction Mode Active Clamp Flyback Converter (GaN-FET 기반의 고효율 및 고전력밀도 경계전류모드 능동 클램프 플라이백 컨버터 최적설계)

  • Lee, Chang-Min;Gu, Hyun-Su;Ji, Sang-Keun;Ryu, Dong-Kyun;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.259-267
    • /
    • 2019
  • An active clamp flyback (ACF) converter applies a clamp circuit and circulates the energy of leakage inductance to the input side, thereby achieving a zero-voltage switching (ZVS) operation and greatly reducing switching losses. The switching losses are further reduced by applying a gallium nitride field effect transistor (GaN-FET) with excellent switching characteristics, and ZVS operation can be accomplished under light load with boundary conduction mode (BCM) operation. Optimal design is performed on the basis of loss analysis by selecting magnetization inductance based on BCM operation and a clamp capacitor for loss reduction. Therefore, the size of the reactive element can be reduced through high-frequency operation, and a high-efficiency and high-power-density converter can be achieved. This study proposes an optimal design for a high-efficiency and high-power-density BCM ACF converter based on GaN-FETs and verifies it through experimental results of a 65 W-rated prototype.

Battery Balancing Method using 2-Switch Flyback Converter (2-스위치 플라이백 컨버터를 이용한 배터리 밸런싱 기법)

  • Kim, Woo-Joon;Kim, Ui-Jin;Park, Seong-Mi;Park, Sung-Jun;Son, Gyung-Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.451-459
    • /
    • 2022
  • Recently, in accordance with the demand for a large capacity of a secondary battery according to an increase in the demand for energy storage devices, a modular series battery configuration is essential. Accordingly, various cell balancing techniques have been proposed to prevent high efficiency and performance degradation of the battery. In this paper, propose a battery voltage balancing topology consisting of a flyback DC/DC converter type of a SIMO (Single-Input-Multiple Output) two-switch configuration for a series battery configuration. The proposed topology shows a structure in which a DC/DC converter connected to each module and a battery cell share one transformer. The topology cell balancing operation is a principle in which the voltage balancing converter of the battery converges to the same value through a transformer that shares a magnetic flux with the cells constituting the module through a single high-frequency transformer. In this paper, the dynamic characteristics analysis of the proposed circuit using PSIM was based and it was verified through experiments on one module.

Practical Design and Implementation of a Power Factor Correction Valley-Fill Flyback Converter with Reduced DC Link Capacitor Volume (저감된 DC Link Capacitor 부피를 가지는 역률 개선 Valley-Fill Flyback 컨버터의 설계 및 구현)

  • Kim, Se-Min;Kang, Kyung-Soo;Kong, Sung-Jae;Yoo, Hye-Mi;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.277-284
    • /
    • 2017
  • For passive power factor correction, the valley fill circuit approach is attractive for low power applications because of low cost, high efficiency, and simple circuit design. However, to vouch for the product quality, two dc-link capacitors in the valley fill circuit should be selected to withstand the peak rectified ac input voltage. The common mode (CM) and differential mode (DM) choke should be used to suppress the electromagnetic interference (EMI) noise, thereby resulting in large size volume product. This paper presents the practical design and implementation of a valley fill flyback converter with reduced dc link capacitors and EMI magnetic volumes. By using the proposed over voltage protection circuit, dc-link capacitors in the valley fill circuit can be selected to withstand half the peak rectified ac input voltage, and the proposed CM/DM choke can be successfully adopted. The proposed circuit effectiveness is shown by simulation and experimentally verified by a 78W prototype.

A Flyback-Assisted Single-Sourced Photovoltaic Power Conditioning System Using an Asymmetric Cascaded Multilevel Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2272-2283
    • /
    • 2016
  • This paper proposes a power conditioning system (PCS) for distributed photovoltaic (PV) applications using an asymmetric cascaded multilevel inverter with a single PV source. One of the main disadvantages of the cascaded multilevel inverters in PV systems is the requirement of multiple isolated DC sources. Using multiple PV strings leads to a compromise in either the voltage balance of individual H-bridge cells or the maximum power point tracking (MPPT) operation due to localized variations in atmospheric conditions. The proposed PCS uses a single PV source with a flyback DC-DC converter to facilitate a reduction of the required DC sources and to maintain the voltage balance during MPPT operation. The flyback converter is used to provide input for low-voltage H-bridge cells which processes only 20% of the total power. This helps to minimize the losses occurring in the proposed PCS. Furthermore, transient analyses and controller design for the proposed PCS in both the stand-alone mode and the grid-connection mode are presented. The feasibility of the proposed PCS and its control scheme have been tested using a 1kW hardware prototype and the obtained results are presented.