• Title/Summary/Keyword: flyback

Search Result 399, Processing Time 0.027 seconds

A Fuel Cell Generation System of SEPIC-Flyback Converter using a Single Transformer (단일 변압기를 사용한 SEPIC-Flyback 컨버터의 연료전지 발전 시스템)

  • Kang, K.S.;Jang, S.J.;Lee, T.W.;Kim, S.S.;Won, C.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.357-359
    • /
    • 2005
  • In this paper, a new SEPIC-Flyback converter with a single transformer has been proposed, which is suitable for a fuel cell based power generation system. The proposed converter is superposition of sepic and flyback converter mode. It has outstanding high boosting output voltage, component utilization and high efficiency characteristics under the inherently severe low output voltage of the fuel cell generator. The proposed converter for a full cell generator is described and verified by simulation and experimental result that make used of the Polymer Electrolyte Membrane Fuel Cell(PEMFC) Generator.

  • PDF

Improved Modeling and Control of Boost-Flyback Converter With High Step-Up Voltage Ratio (높은 승압비를 갖는 부스트-플라이백 컨버터의 개선된 모델링 방법)

  • Seo, Sang-Uk;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 2012
  • This paper proposes the aggregated modeling and control of integated boost-flyback converter (IBFC) for understanding of dynamics characteristic and designing of relevant controller. The basic concept of the aggregated modeling is to substitute the boost or the flyback converter with an equivalent current source. Since each converter with equivalent current source corresponds to the basic boost and flyback converters, the overall mathematical process is significantly simplified for the modeling. Afterwards each result is combined to construct the complete model of the IBFC, and the relevant controller is designed through the achieved small-signal model. Simulation and experimental results show excellent agreement with the theoretical expectations.

High efficiency and high power factor single-stage forward-flyback converter (고효율 고역률 단일 전력단 포워드 플라이백 컨버터)

  • Choi, Yoon;Kang, Jeong-il;Oh, Dong-sung;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.190-191
    • /
    • 2013
  • 본 논문에서는 고역률 및 고효율 동작이 가능한 단일 전력단 forward-flyback 컨버터를 제안한다. 기존 단일전력단 forward 컨버터의 경우, 입력 전압이 출력 전압보다 낮은 경우 Dead zone 구간이 발생하여 고역률 획득이 어려우며, 자화 인덕터 offset 전류가 크기 때문에 자기소자의 손실로 인한 고효율 동작이 어렵다. 본 논문에서 제안하는 forward-flyback 컨버터는 2차 측에 삽입된 DC 블러킹 캐패시터에 의해 자화 인덕터의 offset 전류를 감소 할 수 있고, 입력 전압에 관계 없이 항상 출력 측으로 에너지를 전달 할 수 있으므로 고효율 및 고역률 획득에 유리하다. 또한 coupled inductor를 사용한 출력 인덕터에 의해 출력 다이오드에는 각 각 동일한 전류가 흐르며, 전압 스트레스를 감소시킬 수 있는 장점이 있다. 제안된 단일 전력단 forward-flyback 컨버터의 타당성을 검증을 위하여 45W급 LED 전원 공급장치의 시작품 제작을 통한 실험 결과를 제시한다.

  • PDF

1KW converter using boost-flyback topology (Boost-Flyback topology를 이용한 1KW급 Converter)

  • Hwang, Sun-Nam;Chae, Hyeng-Jun;Lim, Sung-Kyoo;Lee, Jun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • This paper proposed DC-DC converter for fuel cell that have high voltage and high current output characteristics. It is required step-up converter to use by general power supply, because the general rated voltage of fuel cell is low about 20$\sim$50V. The miniaturization of converter and DC link voltage can be controlled and high quality of output voltage uses mainly DC-DC converter. The boost converter and buck-boost converter do not get high boosting ratio. It is that proposed boost-flyback converter. Through simulation and an experiment, it could get high boosting ratio and efficiency more than 90%.

  • PDF

Analysis and Design of a High Voltage Flyback Converter with Resonant Elements

  • Hong, Sung-Soo;Ji, Sang-Keun;Jung, Young-Jin;Roh, Chung-Wook
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.107-114
    • /
    • 2010
  • This paper presents the operational characteristics of a high voltage flyback converter with resonant elements. In high voltage low power applications, the effect of a transformer’s stray capacitance might be the most important factor that influences the overall performance of the circuit. A detailed mode analysis and the design procedure are presented in designing the high voltage flyback converter. To verify and confirm the validities of the presented analysis and design procedure, a computer simulation and experiments have been performed.

A Study on PFC of Active Clamp ZVS Flyback Converter (능동 클램프 ZVS 플라이백 컨버터의 역률개선에 관한 연구)

  • Choi T.Y.;Ahn J.J.;Ryu D.K.;Lee W.S.;Won C.Y.;Kim S.S.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.538-541
    • /
    • 2001
  • This paper analyzed PFC of active clamp ZVS flyback converter by adding two method PFC (Power Factor Correction) circuit - Two-Stage and Single-Stage. It improves on Flyback converter's disadvantage - loss increasing by switching, noise increasing, high voltage stress of switch - by adding active clamp circuit. Simulation results show to improve the input PF of 300W ZVS flyback converter by adding Single-Stage, Two-Stage PFC circuit.

  • PDF

Novel Energy Recovery Circuit for High Efficiency Flyback Converter (고효율 플라이백 컨버터를 위한 새로운 에너지 회복회로)

  • Jung, Yong-Chae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.529-534
    • /
    • 2006
  • Nowadays, more than ever before, many researchers take much interest in raising the efficiency of a power converter. In Flyback converter, the resistor of RCD snubber consumes the stored energy in leakage inductor. It plays a role in degrading the overall system efficiency. Thus, in this paper, a novel energy recovery circuit of Flyback converter is proposed to improve the efficiency. The operational principle of the proposed circuit is explained in detail. And, it is vilified through the simulation and experimental results.

A New Modular 3-Phase AC-DC Flyback Converter for Telecommunication (새로운 통신전원용 3상 AC-DC Flyback 컨버터 모듈)

  • Lee, J.P.;Choi, J.Y.;Yoon, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.109-111
    • /
    • 1998
  • A novel mode of parallel operation of 3-phase AC-DC flyback converter for power factor correction along with tight regulation was recently analyzed and presented. The advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included to confirm the validity of the analysis.

  • PDF

Characteristic analysis of RCD clamp for reducing voltage stress of Flyback converter (플라이백 컨버터의 전압 스트레스 저감을 위한 RCD클램프의 특성 분석)

  • Jeong, Jin-Woo;Lim, Jeong-Gyu;Chung, Se-Kyo;Kim, Jong-Hae;Oh, Dong-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.5-6
    • /
    • 2010
  • RCD clamp is used for a low cost flyback converter to clamp the voltage spikes caused by the leakage inductance of the flyback transformer. In this paper, the operational characteristics of the flyback converter with the clamp circuit are analyzed using an equivalent circuit. The simulation and experimental results are provided to verify the proposed analysis.

  • PDF

Analysis and Design of Transformer Windings Schemes in Multiple-Output Flyback Auxiliary Power Supplies with High-Input Voltage

  • Meng, Xianzeng;Li, Chunyan;Meng, Tao;An, Yanhua
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1122-1132
    • /
    • 2019
  • In this paper, aiming at high-voltage applications, transformer windings schemes of multiple-output two-transistor flyback converters are investigated, which are mainly based on the stray capacitances effect. First, based on a transformer model including equivalent stray capacitors, the operational principle of the converter is presented, and the main influence of its stay capacitors is determined. Second, the windings structures of the transformer are analyzed and designed based on the stray capacitances effect. Third, the windings arrangements of the transformer are analyzed and designed through a coupling analysis of the secondary windings and a stray capacitance analysis between the primary and secondary windings. Finally, the analysis and design conclusions are verified by experimental results obtained from a 60W laboratory prototype of a multiple-output two-transistor flyback converter.