• Title/Summary/Keyword: flux recovery rate

Search Result 62, Processing Time 0.027 seconds

Study on Sludge Thickening with Mesh is Used as Filtration Msdia (여과분리재를 이용한 슬러지 농축에 관한 연구)

  • Kim, Boo-Gil;Park, Min-Soo
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.945-949
    • /
    • 2006
  • For a membrane bio-reactor, it is possible to fillet and separate activated sludge and effluent by head loss of centimeters, if non-woven fabric material is used as titration media. However, if non-woven fabric material is used to thicken high-concentration sludge, excessive sludge attachment causes the rapid decrease of flux. Mesh with fore sizes of $100{\mu}m,\;150{\mu}m,\;and\;200{\mu}m$ allows for easy separation of attached sludge. This study examined the possibility of mesh as filtration media. Existing close-flow filtration process, which requires maintaining sludge movement, makes It difficult to obtain high thickening rate. With a view of complementing this weakness, this study has made an experimental examination on how high-concentration sludge (about 3,000mg/L to 10,000mg/L) will be filtered and thickened when mesh module is submersed in the bio-reactor. Effluent flowed from the bottom of the bio-reactor by head loss of 65cm. In case of pore size of $100{\mu}m$, SS showed high recovery of 80% to 96%; therefore, it has been decided that mesh can be used as filtration media. Filtration lasted for more than 9 hours, until sludge with 9,000mg/L in MLSS concentration was thickened 9 times as dense. In the range from 3,610mg/L to 9,060mg/L in MLSS concentration, it was possible to obtain effluent with less than 2mg/L in MLSS concentration within 10 minutes.

Enrichment of valuable elements from vanadium slag using superconducting HGMS technology

  • He, Sai;Yang, Chang-qiao;Li, Su-qin;Zhang, Chang-quan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • Vanadium slags is a kind of vanadiferous solid waste from steelmaking process. It not only occupies land, pollutes environment, but also leads to waste of resources. Based on the difference of magnetic susceptibility of different particles caused by their chemical and physical properties from vanadium slag, a new technology, superconducting high gradient magnetic separation was investigated for separation and extraction of valuable substances from vanadium slag. The magnetic concentrate was obtained under optimal parameters, i.e., a particle size -200 mesh, a magnetic flux density of 0.8 T, a slurry concentration of 5 g/L, an amount of steel wools of 25 g and a slurry flow velocity of 2 L/min. The content of $Fe_2O_3$ in concentrate could be increased from 39.6% to 55.0% and $V_2O_5$ from 2.5% to 4.0%, respectively. The recovery rate is up to 42.9%, and the vanadium slag has been effectively reused.

A STUDY ON THE DEVELOFMENT OF CARD URIJESR USING DOMESTIC RESOURCES (국내자원(國內資源)을 활용(活用)한 가탄재(加炭材)의 개발(開發)에 관(關)한 연구(硏究))

  • Choe, Jeong-Gil;Kim, Dong-Ok
    • Journal of Korea Foundry Society
    • /
    • v.2 no.3
    • /
    • pp.16-24
    • /
    • 1982
  • For the purpose of development of domestic carburizer, when the basicity of ash in carburizer was changed from $Na_2O/Al_2O_3+SiO_2$ ; 0.06 to $Na_2O/Al_2O_3+SiO_2$ ; 0,196wt%, using $Na_2O$ as flux for domestic graphite resource (Bong Myung armorphous graphite), carburizing efficiency was improved as basicity increased, optimum basicity value was $Na_2O/Al_2O_3+SiO_2$ ; 0.151. This means that $Na_2O$ contributed to lower viscosity of slag and raise occurence probability of specific reaction surface between molten iron and carburizer. The experiment of effect of general characteristics offecting carburizing ability of this carburizer was performed, the result is that 10/30 mesh was optimum size of the carburizer and as carbon equivalent of molten iron was higher, carburizing ratio was lowered, but when si concentration was below 1.8% in general cast iron melting region, recovery showed 75-85%. As agitation rate of molten iron and temperature interval were higher, Carburizing ratio was increased and showed max, 94%. Desulfurizing phenomena of molten iron by $Na_2O$ in carburizer didn't appear.

  • PDF

Effect of Operating Conditions on the Fouling of UF Membrane in Treatment of Dissolved Organic Matter (UF를 이용한 용존성 유기물질 제거시 운전조건이 파울링에 미치는 영향)

  • Kwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1183-1191
    • /
    • 2000
  • Operating conditions for reduction of membrane fouling in treatment of dissolved organic matter by UF membrane process were investigated by pilot-scale plant using various operating conditions. As inlet pressure increased, increament of transmembrane pressure and flux decline were faster. The reason was due to the increase in adsorption of dissolved organic matter and the development of cake layer compression on the membrane surface. When efficient pressure (the difference of pressure between backwash and transmembrane pressures) was high, small amount of pollutant was retained on the membrane surface. When backwash was frequently conducted, low concentration of pollutant was maintained in recycling water. Therefore, backwash could be efficiently conducted with high efficient pressure and high frequency. Fouling rate was correlated with backwash and inlet pressures, recovery rate and cumulative permeated volume. Among the operating parameters backwash pressure was most closely related to fouling rate and inlet pressure was next to backwash pressure. It seems that the fouling was strongly related to pressure which leads to the cake layer compression and adsorption of dissolved organic matter.

  • PDF

Rejection property of geosmin and 2-Methylisoborneol (MIB) with high concentration level at multi stage nanofiltration (NF) membrane system (다단 나노여과 공정에서 고농도 geosmin 및 2-Methylisoborneol (MIB)의 제거특성)

  • Yu, Young-Beom;Choi, Yang Hun;Kim, Dong Jin;Kwon, Soon-Buhm;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.397-409
    • /
    • 2014
  • Algal problem in drinking water treatment is being gradually increased by causing deterioration of water supplies therefore, especially taste and odor compounds such as geosmin and 2-MIB occur mainly aesthetic problem by its unpleasant effects resulting in the subsequent onset of complaints from drinking water consumer. Recently, geosmin and 2-MIB are detected frequently at abnormally high concentration level. However, conventional water treatment without advanced water treatment processes such as adsorption and oxidation process, cannot remove these two compounds efficiently. Moreover, it is known that the advanced treatment processes i.e. adsorption and oxidation have also several limits to the removal of geosmin and 2-MIB. Therefore, the purpose of this study was not only to evaluate full scale nanofiltration membrane system with $300m^3/day$ of permeate capacity and 90% of recovery on the removal of geosmin and 2-MIB in spiked natural raw water sources at high feed concentration with a range of approximately 500 to 2,500 ng/L, but also to observe rejection property of the compounds within multi stage NF membrane system. Rejection rate of geosmin and 2-MIB by NF membrane process was 96% that is 4% of passage regardless of the feed water concentration which indicates NF membrane system with an operational values suggested in this research can be employed in drinking water treatment plant to control geosmin and 2-MIB of high concentration. But, according to results of regression analysis in this study it is recommended that feed water concentration of geosmin and 2-MIB would not exceed 220 and 300 ng/L respectively which is not to be perceived in drinking tap water. Also it suggests that the removal rate might be depended on an operating conditions such as feed water characteristics and membrane flux. When each stage of NF membrane system was evaluated relatively higher removal rate was observed at the conditions that is lower flux, higher DOC and TDS, i.e., $2^{nd}$ stage NF membrane systems, possibly due to an interaction mechanisms between compounds and cake layer on the membrane surfaces.

Measurement of Bubble Size in Flotation Column using Image Analysis System (이미지 분석시스템을 이용한 부선컬럼에서 기포크기의 측정)

  • An, Ki-Seon;Jeon, Ho-Seok;Park, Chul-Hyun
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.104-113
    • /
    • 2020
  • Bubble size in froth flotation has long been recognized as a key factor which affects the bubble residence time, the bubble surface area flux (Sb) and the carrying rate (Cr). This paper presents method of bubble size measurement, relationship between operating variables and gas dispersion properties in flotation column. Using high speed camera and image analysis system, bubble size has been directly measured as a function of operating parameters (e.g., superficial gas rate (Jg), superficial wash water rate (Jw), frother concentration) in flotation column. Relationship compared to measured and estimated bubble size was obtained within error ranges of ±15~20% and mean bubble size was 0.718mm. From this system the empirical relationship to control the bubble size and distribution has been developed under operating conditions such as Jg of 0.65~1.3cm/s, Jw of 0.13~0.52cm/s and frother concentration of 60~200ppm. Surface tension and bubble size decreased as frother concentration increased. It seemed that critical coalescence concentration (CCC) of bubbles was 200ppm so that surface tension was the lowest (49.24mN/m) at frother concentration of 200ppm. Bubble size tend to increase when superficial gas rate (Jg) decreases and superficial wash water rate Jw and frother concentration increase. Gas holdup is proportional to superficial gas rate as well as frother concentration and superficial wash water rate (at the fixed superficial gas rate).

Influence of pH and Ionic Strength on Treatment of Radioactive Boric Acid Wastes by Forward Osmosis Membrane (정삼투막에 의한 붕산함유 방사성 폐액 처리를 위한 pH 및 이온강도 영향)

  • Choi, Hye-Min;Hwang, Doo-Seong;Lee, Kune-Woo;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.193-198
    • /
    • 2013
  • In general, boron recovery of 40-90% could be achieved by Reverse Osmosis (RO) membranes in neutral pH condition. As an emerging technology, Forward Osmosis (FO) membrane has attracted growing interest in wastewater treatment and desalination. The objective of this study is to evaluate the possibility of the boron removal in radioactive liquid waste by FO. In this study, the performance of FO was investigated to remove boron in the simulated liquid waste as the factors such as pH, osmotic pressure, ionic strength of solution, etc. The pH of feed solution is a major operating parameter which strongly influences to the permeation of boron and more than 80% of boron content can be separated when conducted at pH values less than 7. The water flux is not influenced but the boron flux and permeation rate tends to decrease in the low salt concentration of 1,000 mg/L. The boron flux increases linearly, but the permeation ratio of reducing boron is nearly constant even with changes in the draw solution concentration.

A Study on the Design Considerations of Vol-Oxidizer for High-Capacity Uranium Dioxide Pellets (대용량 우라늄디옥사이드 펠릿 산화를 위한 공기산화로의 설계 고려사항에 대한 연구)

  • Jung, Jae-Hoo;Lee, Hyo-Jik;Park, Byung-Suk;Yoon, Ji-Sup;Kim, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.472-482
    • /
    • 2007
  • This study deals with the design and implementation results for a high-capacity vol-oxidizer that can convert Uranium Dioxide pellets to $U_3O_8$ powder for up to several tens of kg HM/batch. We developed two versions of the $1^{st}$ vol-oxidizer and the $2^{nd}$ vol-oxidizer. Through an experiment with the $1^{st}$ vol-oxidizer, we deduced some problems concerning the design considerations such as the recovery rate of $U_3O_8$, the oxidation time of the Uranium Dioxide pellets, the exothermic reaction, and the powder dispersion. From the analyses of the drawbacks of the $1^{st}$ vol-oxidizer, we devised some novel items such as a folding type mesh, vibrators, and mixing blades. Also, we used the Stokes and Density ratio Eq. to determine the most reasonable flux for preventing a powder dispersion. Compared with the results of the $1^{st}$ vol-oxidizer, we showed that both the permeability of the $U_3O_8$ powders and the oxidation rate of the Uranium Dioxide pellets of the $2^{nd}$ vol-oxidizer were remarkably increased, and the temperature of the reactor was controlled well in spite of an exothermic reaction. Also, the powder was not entirely dispersed through the outlet of the voloxidizer. The experimental results of this work can help in the design of a novel and efficient vol-oxidizer with a higher capacity.

Comprehensive Analysis of Major Factors Associated with the Performance of Reverse Osmosis Desalination Plant for Energy-saving (에너지 소모를 고려한 역삼투 해수담수화 플랜트 주요 성능인자 영향 분석)

  • Kim, Jihye;Lee, Kyung-Hyuk;Lim, Jae-Lim
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.314-322
    • /
    • 2019
  • A worsened drought in Chungnam province of Korea due to climate change and increasing water demand at Daesan industrial complex have motivated the 100,000 ㎥/d seawater desalination project. In this study, therefore, the comprehensive analysis of parameters affecting the reverse osmosis (RO) performance was conducted. Under the various conditions of feedwater salinity and temperature in Daesan, energy consumption was calculated as 2.39 ± 0.13 kWh/㎥. The decrease in membrane flux and recovery rate positively impacted annual operation cost. The average total dissolved solids (TDS) of the permeate and energy consumption with highly permeable membrane according to the membrane manufacturer were 3.84 mg/L and 2.22 ± 0.13 kWh/㎥, respectively. In addition, energy saving up to 0.29 kWh/㎥ or cost reduction of membrane module up to 15.6% is expected by changing the RO configuration from full two pass to partial or split partial two pass.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.