• Title/Summary/Keyword: flux optimization

Search Result 263, Processing Time 0.026 seconds

Individual and Global Optimization of Switched Flux Permanent Magnet Motors

  • Zhu, Z.Q.;Liu, X.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 2012
  • With the aid of genetic algorithm (GA), global optimization with multiple geometry parameters is feasible in the design of switched flux permanent magnet (SFPM) machines. To investigate the advantages of global optimization over individual optimization, which has been used extensively for the design of SFPM machines, a comparison between the two approaches is carried out for the case of fixed copper loss and volume. In the case of individual parameter optimization, the sequence in which the individual parameters are optimized is very important. In the global optimization a better design can always be achieved although the corresponding torque density is found to be only slightly better than that of individually optimized with correct design sequence. By using the obtained global optimization results, the performance in machines having two types of stator and rotor pole combinations, i.e. 12/10 and 12/14, are compared, and it is shown that higher torque is exhibited in the 12/14 SFPM machine. Finally, this paper also demonstrates that global optimization, with the restriction of equal pole width, magnet thickness and slot opening, can maximize the torque density without significantly sacrificing other performance, such as cogging torque and overload capability.

Flux Optimization Using Genetic Algorithms in Membrane Bioreactor

  • Kim Jung-Mo;Park Chul-Hwan;Kim Seung-Wook;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.863-869
    • /
    • 2006
  • The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal time profiles. From experiments utilizing short and long periods of forward and reverse filtration, various experimental process parameters were determined. The GA indicated that the optimal values for the net flux fell between 263-270 LMH when the forward filtration time ($t_f$) was 30-37 s and the backward filtration time ($t_b$) was 0.19-0.27 s. The experimental data confirmed the optimal backpulse duration and frequency that maximized the net flux, which represented a four-fold improvement in 24-h backpulsing experiments compared with the absence of backpulsing. Consequently, the identification of a region of feasible parameters and nonlinear flux optimization were both successfully performed by the genetic algorithm, meaning the genetic algorithm-based optimization proved to be useful for solving SMBR flux optimization problems.

Process Optimization for Co-based Self-flux Alloy Coating by Taguchi Method (다구찌 기법에 의한 코발트기 자융성합금 용사코팅의 최적공정 설계)

  • Lee, Jae-Hong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.108-114
    • /
    • 2013
  • This paper describes process optimization for thermal-sprayed Co-based self-flux alloy coating by Taguchi method. Co-based self-flux alloy coatings were fabricated according to $L_9(3^4)$ orthogonal array using flame spray process. Hardness test and wear test were performed, the results were analyzed by analysis of variance(ANOVA) considering a multi response signal to noise ratio(MRSN). From the results of ANOVA, the optimal combination of the flame spray parameters on Co-based self-flux alloy coating could be predicted. The calculated hardness and wear rate of the coatings by ANOVA were found to be close to that of confirmation experimental result.

Inter-scale Observation and Process Optimization for Guanosine Fermentation

  • Chu, Ju;Zhang, Si-Liang;Zhuang, Ying-Ping
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.233-244
    • /
    • 2005
  • Guanosine fermentation process can be well predicted and analyzed by the proposed state equations describing the dynamic change of a bioreactor. Pyruvate and alanine were found to be characteristically accumulated along with the decline of the guanosine formation rate during the mid-late phase of the process. The enzymological study of the main pathways in glucose catabolism and the quantitative stoichiometric calculation of metabolic flux distribution revealed that it was entirely attributed to the shift of metabolic flux from hexose monophosphate (HMP) pathway to glycolysis pathway. The process optimization by focusing on the restore of the shift of metabolic flux was conducted and the overcoming the decrease of oxygen uptake rate (OUR) was taken as the relevant factor of the trans-scale operation. As a result, the production of guanosinewas increased from 17 g/L to over 34 g/I.

  • PDF

Robust Adaptive Control for Efficiency Optimization of Induction Motors (유도전동기의 효율 최적화를 위한 강인 적응제어)

  • Hwang, Young-Ho;Park, Ki-Kwang;Kim, Hong-Pil;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1505-1506
    • /
    • 2008
  • In this paper, a robust adaptive backstepping control is developed for efficiency optimization of induction motors with uncertainties. The proposed control scheme consists of efficiency flux control(EFC) using a sliding mode adaptive flux observer and robust speed control(RSC) using a function approximation for mechanical uncertainties. In EFC, it is important to find the flux reference to minimize power losses of induction motors. Therefore, we proposed the optimal flux reference using the electrical power loss function. The sliding mode flux observer is designed to estimate rotor fluxes and variation of inverse rotor time constant. In RSC, the unknown function approximation technique employs nonlinear disturbance observer(NDO) using fuzzy neural networks(FNNs). The proposed controller guarantees both speed tracking and flux tracking. Simulation results are presented to illustrate the effectiveness of the approaches proposed.

  • PDF

Parameter design optimization of solenoid type magnetic actuator using response surface methodology (반응표면법을 이용한 솔레노이드형 자기액추에이터의 치수 최적화 설계)

  • Soh, Hyun-Jun;Yoo, Jeong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.579-584
    • /
    • 2003
  • Solenoid type magnetic actuator is the device, which could translate the electromagnetic energy to mechanical force. The force generated by magnetic flux, could be calculated by Maxwell stress tensor method. Maxwell stress tensor method is influenced by the magnetic flux path. Thus, magnetic force could be improved by modification of the iron case, which is the route of the magnetic flux. Modified design is obtained by parameter optimization using by Response surface methodology.

  • PDF

A Study on the Opimization of Process and Operation Condition for Membrane System in Tap Water Treatment (분리막을 이용한 정수처리 System에서 처리공정 및 운전조건의 최적화에 관한연구)

  • 오중교
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.193-201
    • /
    • 1999
  • The object of study were the development of membrane process and the optimization of operation condition for membrane system, which was used the pre-treatment system of tap water treatment in steady of conventional process such as coagulation, sedimentation. The higher steady flux is very important factor, by a suitable pre-treatment and optimization of operating condition such as fouling control, crossflow and backwashing method, in membrane system. So, we were observed the effect of flux decline for membrane used by 4 type ultrafiltration(UF) membrane pre-treatment process, and optimized the operation condition of filtration system under various MWCO(Molecular weight cut-off), operation pressure, linear velocity and temperature to maintain higher flux. From these experiment, we were identified that UF process showed a slower flux decline rate and a higher flux recovery than microfiltration(MF) membrane. The water quality of UF permeate was better than that of MF, and was not effected pre-treatment process. In the operation condition, the rate of flux decline was diminished by a higher linear velocity and operation temperature, lower pressure.

  • PDF

A Lighting direction and Luminous Flux Control for Energy-efficiency under Illuminance Requirements in Indoor Lighting Systems (사용자 요구 조도 보장 에너지 효율적 실내 조명 시스템 조명 방향 및 광속 제어 기법)

  • Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.19-25
    • /
    • 2015
  • The management of energy resources for efficient utilization of the energy resources while reducing the system costs is a critical technical issue. Among many kinds of the energy resource management, the energy reduction for indoor lighting systems is getting much concern as a large portion of energy consumption has been made for indoor lightings. In this paper, an energy-efficient lighting control scheme for indoor lighting systems in order to reduce the energy consumption by controlling the luminous flux and the lighting direction under the illuminance constraints is proposed. With the use of the user location information for the luminaire which is closely located to the user, the proposed scheme firstly sets the light direction of the luminaire to be aligned to the user location. Then, an optimization problem to find the luminous flux of each luminaire is formulated in order to minimize the luminous flux sum of the luminaires with the constraints for the dynamic ragne of the luminous flux, and the light flux for each luminaire is determined by the solution of the problem. Simulation results show that the proposed scheme outperforms the luminaire control scheme with only the luminous flux control in the evaluation of satisfaction of the required illuminance level.

Analysis and Optimization of Rotor-twisted Structure for 12/10 Alternate Poles Wound FSPM Machine for Electric Vehicles

  • Xie, De'e;Wang, Yu;Deng, Zhiquan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.269-274
    • /
    • 2013
  • Fault-tolerant capability, wide speed range and overload capability are required in electric motors used in electric vehicles. In this paper, based on the analysis of the all poles wound and alternate poles wound flux-switching permanent-magnet machines, an optimization method is studied to reduce torque ripple. The method takes account of both flux-leakage and cogging torque. The simulation result shows that the method can reduce the torque ripple effectively. This study lays the foundation for the further application of FSPM in electric vehicles.

Optimization of chemical cleaning of discarded reverse osmosis membranes for reuse

  • Jung, Minsu;Yaqub, Muhammad;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study optimized the chemical cleaning process of discarded RO membranes for reuse in less demanding separation processes. The effect of physicochemical parameters, including the temperature, cleaning time, pH of the cleaning solution, and addition of additives, on the cleaning process was investigated. The membrane performance was evaluated by testing the flux recovery rate and salt rejection before and after the cleaning process. High temperatures (45-50 ℃) resulted in a better flux recovery rate of 71% with more than 80% salt rejection. Equal time for acid and base cleaning 3-3 h presented a 72.43% flux recovery rate with salt rejection above 85%. During acid and base cleaning, the best results were achieved at pH values of 3.0 and 12.0, respectively. Moreover, 0.05% concentration of ethylenediaminetetraacetic acid presented 72.3% flux recovery, while 69.2% flux was achieved using sodium dodecyl sulfate with a concentration of 0.5%; both showed >80% salt rejection, indicating no damage to the active layer of the membrane. Conversely, 0.5% concentration of sodium percarbonate showed 83.1% flux recovery and 0.005% concentration of sodium hypochlorite presented 85.2% flux recovery, while a high concentration of these chemicals resulted in oxidation of the membrane that caused a reduction in salt rejection.