• Title/Summary/Keyword: flux map

Search Result 85, Processing Time 0.027 seconds

Study on Characteristics of EP-MAP Hybrid Machining by Optimization of Magnetic Flux Density (자기력 최적화에 따른 전해-자기 복합가공의 특성 평가에 관한 연구)

  • Park, Chang Geun;Kwak, Jae Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.319-324
    • /
    • 2013
  • In this study, an EP (electro-polishing)-MAP (magnetic abrasive polishing) hybrid process was developed as a precision finishing process. To evaluate the characteristics of this EP-MAP hybrid process, a series of experiments were carried out using various working gaps, current densities, and electrolyte concentrations. As a result, $NaNO_3$ was found to be very suitable as the electrolyte of the hybrid process because there was no electrochemical reaction with the CNT-Co composite. Moreover, an increase in the magnetic flux density affected the liquidity of the electrolyte and prevented it from flowing into the CNT-Co composite powder. For that reason, the lower liquidity of the electrolyte increased the thermal energy on the surface of the workpiece.

Tool Geometry Optimization and Magnetic Abrasive Polishing for Non-ferrous Material (공구형상 최적화 및 비자성체의 자가연마 특성 연구)

  • Kim, Sang-Oh;You, Man-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.313-320
    • /
    • 2010
  • The magnetic abrasive polishing (MAP) process is used to achieve the nano-meter grade polishing results on flat or complicated surface. In previous study, polishing the stainless steel plate which is a non-magneto-material was tried. To polish non-magneto-materials using the MAP process was very difficult because the process was fundamentally possible by the help of a magnetic force. Therefore, it had lower efficiency than magneto-materials such as SM45C. In this study, optimization for tool geometry of the MAP was performed to improve the magnetic force between tool and workpiece. Moreover, a permanent magnet was installed below the non-magneto-material to improve the magnetic force. And then the design of experiments was carried out to evaluate the effect of the MAP parameters on the polishing results.

UNIQUENESS OF IDENTIFYING THE CONVECTION TERM

  • Cheng, Jin;Gen Nakamura;Erkki Somersalo
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.405-413
    • /
    • 2001
  • The inverse boundary value problem for the steady state heat equation with convection term is considered in a simply connected bounded domain with smooth boundary. Taking the Dirichlet to Neumann map which maps the temperature on the boundary to the that flux on the boundary as an observation data, the global uniqueness for identifying the convection term from the Dirichlet to Neumann map is proved.

  • PDF

Sensitivity analysis of input variables to establish fire damage thresholds for redundant electrical panels

  • Kim, Byeongjun;Lee, Jaiho;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.84-96
    • /
    • 2022
  • In the worst case, a temporary ignition source (also known as transient combustibles) between two electrical panels can damage both panels. Mitigation strategies for electrical panel fires were previously developed using fire modeling and risk analysis. However, since they do not comply with deterministic fire protection requirements, it is necessary to analyze the boundary values at which combustibles may damage targets depending on various factors. In the present study, a sensitivity analysis of input variables related to the damage threshold of two electrical panels was performed for dimensionless geometry using a Fire Dynamics Simulator (FDS). A new methodology using a damage evaluation map was developed to assess the damage of the electrical panel. The input variables were the distance between the electrical panels, the vertical height of the fuel, the size of the fire, the wind speed and the wind direction. The heat flux was determined to increase as the vertical distance between the fuel and the panel decreased, and the largest heat flux was predicted when the vertical separation distance divided by one half flame length was 0.3-0.5. As the distance between the panels increases, the heat flux decreases according to the power law, and damage can be avoided when the distance between the fuel and the panel is twice the length of the panel. When the wind direction is east and south, to avoid damage to the electrical panel the distance must be increased by 1.5 times compared to no wind. The present scale model can be applied to any configuration where combustibles are located between two electrical panels, and can provide useful guidance for the design of redundant electrical panels.

Condensation oscillation characteristic of steam with non-condensable gas through multi-hole sparger at low mass flux

  • Dandi Zhang;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.780-791
    • /
    • 2023
  • To study oscillation characteristic of steam and non-condensable gas direct contact condensation through multi-hole sparger at low mass flux, a series of experiments of pure steam and mixture gas condensation have been carried out under the conditions of steam mass flux of 20-120kg/m2s, water temperature of 20-95 ℃ and mass fraction of non-condensable gas of 0-5%. The regime map of pure steam condensation through multi-hole sparger is divided into steam chugging, separated bubble, aggregated bubble and escaping aggregated bubble. The bubbles behavior of synchronization in the same hole columns and desynchronized excitation between different hole columns can be found. The coalescence effect of mixture bubbles increases with water temperature and non-condensable gas content increasing. Pressure oscillation intensity of pure steam condensation first increases and then decreases with water temperature increasing, and increases with steam mass flux increasing. Pressure oscillation intensity of mixture gas condensation decreases with water temperature and non-condensable gas content increasing, which is significantly weaker than that of pure steam condensation. The oscillation dominant frequency decreases with the rise of water temperature and non-condensable gas content. The correlations for oscillation intensity and dominant frequency respectively are developed in pure steam and mixture gas condensation at low mass flux.

EXISTENCE OF MINIMAL SURFACES WITH PLANAR ENDS

  • Jin, Sun-Sook
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.299-306
    • /
    • 2010
  • In this article we consider axes of a complete embedded minimal surface in $R^3$ of finite total curvature, and then prove that there is no planar ends at which the Gauss map have the minimum branching order if the minimal surface has a single axis.

Experimental Study and Correlation Development of Critical Heat Flux under Low Pressure and Low Flow Condition

  • Kim, Hong-Chae;Baek, Won-Pil;Kim, Han-Kon;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.356-361
    • /
    • 1997
  • To investigate parametric effect on CHF and to get CHF data, experimental study has been performed with vertical round tubes under the condition of low pressure and low flow (LPLF). Test sections are made of Inconel-625 tube and have the geometry of 8 and 10 mm in diameter, and 0.5 and 1.0 m in heated length. All experiments have been conducted at the pressure of under 9 bar, the mass flux of under 250 kg/$m^2$ and the inlet subcooling of 350 and 450 kJ/kg, for stable upward flow with water as a coolant. Flow regime analysis has been performed for obtained CHF data with Mishima's flow regime map, which reveals that most of the CHF occur in the annular-mist flow regime. General parametric trends of the collected CHF data are consistent with those of previous studies. However, for the pressure effect on CHF, two different are observed; For relatively high mass flux, CHF increases with pressure and far lower mass flux, CHF decrease with pressure. Using modern data regression tool, ACE algorithm, two new CHF correlations for LPLF condition are developed based on local condition and inlet condition, respectively. The developed CHF correlations show better prediction accuracy compared with existing CHF prediction methods.

  • PDF