• Title/Summary/Keyword: flux balancing

Search Result 15, Processing Time 0.017 seconds

Software of Slit-Viewing Camera Module for IGRINS (Immersion GRating INfrared Spectrograph)

  • Lee, Hye-In;Pak, Soojong;Lee, Jae-Joon;Mace, Gregory;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.1-66.1
    • /
    • 2016
  • We developed an observation control software for the IGRINS (Immersion Grating Infrared Spectrograph) silt-viewing camera module, which points the astronomical target onto the spectroscopy slit and sends tracking feedbacks to the telescope control system. The point spread function (PSF) is not always symmetric. In addition, bright targets are easily saturated and shown as a donut shape. It is not trivial to define and find the center of the asymmetric PSF especially on a slit mask. We made a center balancing algorithm (CBA) following the concept of median. The CBA derives the expected center position along the slit-width axis by referencing the stray flux ratios of both upper and lower sides of the slit. We compared efficiencies of the CBA and those of a two-dimensional Gaussian fitting (2DGA) through simulations from observation images in order to evaluate the center finding algorithms. Both of the algorithms are now applied in observation and users can select the algorithm.

  • PDF

An experimental study on instability and control of co-flow diffusion flames (동축류 확산화염의 불안정성과 제어에 관한 실험적 연구)

  • Lee, Hyeon-Ho;Hwang, Jun-Yeong;Jeong, Seok-Ho;Lee, Won-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.153-164
    • /
    • 1997
  • Flame oscillation phenomena in a co-flow diffusion flame was experimentally studied with periodic fuel supply using a solenoid valve. The degree of excitation was controlled by changing the volume flux of fuel passing through the valve. Flame oscillation frequencies were measured utilizing a photodiode, a spectrum analyzer, video and high speed movies. Laser planar visualization was employed to study the correlation between the flame oscillation and the toroidal vortices. Observed are three regimes of flame oscillation, where the oscillation frequencies are for the multiples of excitation, the excitation itself and the flame natural oscillation. Both periods of natural oscillation and of excitation induced oscillation exist over one cycle of the excitation in the frequency multiplied regime. It is considered as an effect of balancing the influence of buoyancy driven vortex with that of excitation induced vortex near the excitation rate of 0.2. Flame shapes are become monotonous as increasing the excitation frequency to the range of over two fold of the natural oscillation. The flame oscillation can be modulated to the frequency of either multiples of excitation or excitation itself under certain conditions. This implies that the flame oscillation could be modulated to avoid the resonance frequency of the combustor, and shows the possibility of active control of the flame oscillation.

Design Study on a Variable Intake and a Variable Nozzle for Hypersonic Engines

  • Taguchi, Hideyuki;Futamura, Hisao;Shimodaira, Kazuo;Morimoto, Tetsuya;Kojima, Takayuki;Okai, Keiichi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.713-721
    • /
    • 2004
  • Variable air intake and variable exhaust nozzle of hypersonic engines are designed and tested in this study. Dimensions for variable geometry air intake, ram combustor and variable geometry exhaust nozzle are defined based on the requirements of a pre-cooled turbojet engine. Hypersonic Ramjet Engine is designed as a scaled test bed for each component. Actuation forces of moving parts for variable intake and variable nozzle are reduced by balancing the other force in the opposite direction. A demonstrator engine which includes variable intake and variable nozzle is designed and the components are fabricated. Composite material with silicone carbide is applied for high temperature parts under oxidation environment such as leading edge of the variable intake and combustor liner. Internal cooling structure is adopted for both moving and static parts of the variable nozzle. Pressure recovery and mass capture ratio of the variable intake at Mach 5 is obtained by a hypersonic wind tunnel test. Flow characteristics of the variable nozzle are obtained by a low temperature flow test. Wall temperature and heat flux of the nozzle at Mach 3 is obtained by a firing test. As results, the intake and the nozzle are proved to be used at designed pressure and temperature environment.

  • PDF

Application of 2D Numerical Model for Natural Rivers using GIS (GIS를 이용한 2차원 수치모형의 자연하천 적용)

  • Kim, Byung-Hyun;Han, Geon-Yeon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.128-142
    • /
    • 2009
  • A lot of efforts have been made to resolve balancing problems between flux and source term and most finite volume models under development have been applied to simple channels such as imaginary and experimental channels. However, a number of numerical problems which can not be found in simple channels occur in the application to natural rivers and the problems should be resolved to apply finite volume models to natural rivers. In this study, 2D finite volume model which is applicable to natural rivers was developed and the accuracy of the developed model was validated through the application of partial dam break In addition, a simple and efficient 2D mesh generation method was suggested and the method can be accurately reflected to 2D mesh converted from surveyed cross sections in Han-river using GIS. The accuracy and applicability of the developed model on natural rivers were verified by performing simulation on Han-river using the generated mesh and comparing computed water elevation with measured water elevation.

  • PDF

Handling Method for Flux and Source Terms using Unsplit Scheme (Unsplit 기법을 적용한 흐름율과 생성항의 처리기법)

  • Kim, Byung-Hyun;Han, Kun-Yeon;Kim, Ji-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.12
    • /
    • pp.1079-1089
    • /
    • 2009
  • The objective of this study is to develop the accurate, robust and high resolution two-dimensional numerical model that solves the computationally difficult hydraulic problems, including the wave front propagation over dry bed and abrupt change in bathymetry. The developed model in this study solves the conservative form of the two-dimensional shallow water equations using an unsplit finite volume scheme and HLLC approximate Riemann solvers to compute the interface fluxes. Bed-slope term is discretized by the divergence theorem in the framework of FVM for application of unsplit scheme. Accurate and stable SGM, in conjunction with the MUSCL which is second-order-accurate both in space and time, is adopted to balance with fluxes and source terms. The exact C-property is shown to be satisfied for balancing the fluxes and the source terms. Since the spurious oscillations in second-order schemes are inherent, an efficient slope limiting technique is used to supply TVD property. The accuracy, conservation property and application of developed model are verified by comparing numerical solution with analytical solution and experimental data through the simulations of one-dimensional dam break flow without bed slope, steady transcritical flow over a hump and two-dimensional dam break flow with a constriction.