• Title/Summary/Keyword: flush end plate connection

Search Result 7, Processing Time 0.017 seconds

Evaluation of Structural Behavior of Tapered Member with Snug-tightened Flush End-plate Connection (밀착조임 볼트체결방법에 따른 엔드플레이트 접합부의 구조성능평가)

  • Chung, Kyung-Soo;Kim, Woo-Sik;Park, Man-Woo;Do, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.121-128
    • /
    • 2010
  • The current trends in steel construction involve the use of tapered sections to minimize the use of excess materials to the extent possible, by choosing cross-sections that are as economical as possible abandoning the classical approach of using prismatic members. In addition, snug-tightened connections, especially the end-plate type, have the advantage of fetching less construction costs and shorter assembly times as opposed to fully tightened joints. Although they have many merits, however, snug-tightened bolted end plates are extremely complex in their structural behavior. In this study, an experimental investigation of the snug-tightened flush end-plate connections of tapered beams were conducted. The primary test parameters were the torque for the clamping bolt, the loading pattern, the bolt type and the connection failure type. Using initial stiffness and load-carrying capacity as proposed by Silva et al. and AISC (2003), the moment-rotation curve of a linearly tapered member with a snug-tightened flush end-plate connection was predicted. Moreover, numerical and experimental data for moment-rotation curves were compared.

Performance of partial strength connection connected by thick plate between column flanges

  • Tahir, Mahmood M.;Juki, Irwan;Ishak, Mohd Y.;Mohammad, Shahrin;Awang, Abdullah Z.;Plank, Roger
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.215-228
    • /
    • 2014
  • Traditional beam connections to the minor axis of a column have relatively low strength and stiffness. A modified detail, using a plate welded between the toes of the column flange - referred to as a toe plate connection - is examined in this paper. The results of an experimental investigation for both flush and extended end-plate connections connected to a 25 mm thick end-plate are presented. The tests are complemented by finite element modelling which compares very well with the test observations. The results show a significant increase in both moment resistance and initial stiffness for this connection detail compared with connections made directly to the column web. This offers the prospect of more optimal solutions taking advantage of partial strength frame design for the minor axis as well as major axis.

Seismic behaviour of gravity load designed flush end-plate joints

  • Cassiano, David;D'Aniello, Mario;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.621-634
    • /
    • 2018
  • Flush end-plate (FEP) beam-to-column joints are commonly used for gravity load resisting parts in steel multi-storey buildings. However, in seismic resisting structures FEP joints should also provide rotation capacity consistent with the global structural displacements. The current version of EN1993-1-8 recommends a criterion aiming at controlling the thickness of the end-plate in order to avoid brittle failure of the connection, which has been developed for monotonic loading conditions assuming elastic-perfectly plastic behaviour of the connection's components in line with the theory of the component method. Hence, contrary to the design philosophy of the hierarchy of resistances implemented in EN1998-1, the over strength and the hardening of the plastic components are not directly accounted for. In light of these considerations, this paper describes and discusses the results obtained from parametric finite element simulations aiming at investigating the moment-rotation response of FEP joints under cyclic actions. The influence of bolt diameter, thickness of end-plate, number of bolt rows and shape of beam profile on the joint response is discussed and design requirements are proposed to enhance the ductility of the joints.

Structural Performance of H-shaped Column-Rafter Connection in the P.E.B Systematic Steel Frames (P.E.B 시스템 강골조에서 H형강 기둥 - Rafter 접합부의 구조성능)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.347-356
    • /
    • 2005
  • Recently, pre-engineering building (P.E.B.) systematic frames are increasingly being used in steel factory buildings, but almost of the related techniques are dependent on the engineering program (e.g, MBS, LTI), which is usually imported from other countries. These are designed under the AISC-ASD because at present there is no Korean design code for P.E.B. frames. Also, there are few studies onbehaviour and we need to develop the element techniques by using H-shaped components.In particular, there is a tendency towards overestimated design because column-rafter connections have been designed with extended end plate type joint, which is treated asrigid joint,so structural examinations are needed. Therefore, this study represents a basic step in ascertaining the application of P.E.B. systematic frames by using H-shaped column-rafter connectionwith flush type end plate. Its structural performance is compared with that of existing extended type joint using a structural performance test. The structural behaviour of specimen was understood qualitatively and the possibility of application (e.g, design aid charts) of semi-connection (flush type) with H-shaped column-rafter was determined.

Effect of bolt preloading on rotational stiffness of stainless steel end-plate connections

  • Yuchen Song;Brian Uy
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.547-564
    • /
    • 2023
  • This study investigates the effect of bolt preloading on the rotational stiffness of stainless steel end-plate connections. An experimental programme incorporating 11 full-scale joint specimens are carried out comparing the behaviours of fully pre-tensioned (PT) and snug-tightened (ST) flush/extended end-plate connections, made of austenitic or lean duplex stainless steels. It is observed from the tests that the presence of bolt preloading leads to a significant increase in the rotational stiffness. A parallel finite element analysis (FEA) validated against the test results demonstrates that the geometric imperfection of end-plate has a strong influence on the moment-rotation response of preloaded end-plate connections, which is crucial to explain the observed "two-stage" behaviour of these connections. Based on the data obtained from the tests and FE parametric study, the performance of the Eurocode 3 predictive model is evaluated, which exhibits a significant deviation in predicting the rotational stiffness of stainless steel end-plate connections. A modified bi-linear model, which incorporates three key properties, is therefore proposed to enable a better prediction. Finally, the effect of bolt preloading is demonstrated at the system (structure) level considering the serviceability of semi-continuous stainless steel beams with end-plate connections.

Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames

  • Zhu, Yan Fei;Chen, Chang Hong;Yao, Yao;Keer, Leon M.;Huang, Ying
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.209-221
    • /
    • 2018
  • An empirical and efficient method is presented for calculating the dynamic increase factor to amplify the applied loads on the affected bays of a steel frame structure with semi-rigid connections. The nonlinear static alternate path analysis is used to evaluate the dynamic responses. First, the polynomial models of the extended end plate and the top and seat connection are modified, and the proposed polynomial model of the flush end plate connection shows good agreement as compared with experimental results. Next, a beam model with nonlinear spring elements and plastic hinges is utilized to incorporate the combined effect of connection flexibility and material nonlinearity. A new step-by-step analysis procedure is established to obtain quickly the dynamic increase factor based on a combination of the pushdown analysis and nonlinear dynamic analysis. Finally, the modified dynamic increase factor equation, defined as a function of the maximum ratio value of energy demand to energy capacity of an affected beam, is derived by curve fitting data points generated by the different analysis cases with different column removal scenarios and five types of semi-rigid connections.

Cyclic behaviour of infilled steel frames with different beam-to-column connection types

  • Sakr, Mohammed A.;Eladly, Mohammed M.;Khalifa, Tarek;El-Khoriby, Saher
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.443-456
    • /
    • 2019
  • Although numerous researchers demonstrated the significant difference in performance between the various beam-to-column connection types, most of the previous studies in the area of infilled steel frames focused on the behaviour of frames with welded connections. Therefore, there is a need for conducting studies on infilled steel frames with other common connection types (extended endplate with and without rib stiffeners, flush endplate and shear connections). In this paper, firstly, a two-dimensional finite-element model simulating the cyclic response of infilled steel frames was presented. The infill-frame interaction, as well as the interactions between connections' components, were properly modelled. Using the previously-validated model, a parametric study on infilled steel frames with five different beam-to-column connection types, under cyclic loading, was carried out. Several parameters, including infill material, fracture energy of masonry and infill thickness, were investigated. The results showed that the infilled frames with welded connections had the highest initial stiffness and load-carrying capacity. However, the infilled frames with extended endplate connections (without rib stiffeners) showed the greatest energy dissipation capacity and about 96% of the load-carrying capacity of frames with welded connections which indicates that this type of connection could have the best performance among the studied connection types. Finally, a simplified analytical model for estimating the stiffness and strength of infilled steel frames (with different beam-to-column connection types) subjected to lateral cyclic loading, was suggested.