• Title/Summary/Keyword: fluoride treatment

Search Result 279, Processing Time 0.025 seconds

Effectiveness of Electromagnetic Interference Shielding of Carbon Nanofiber/Poly(vinylidene fluoride) Composites as a Function of Beat Treatment Temperature and Time (열처리 온도와 시간에 따른 나노탄소섬유/PVDF 복합재의 전자파 차폐 특성)

  • 김명수;이방원;우원준;안광희
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.367-374
    • /
    • 2001
  • The electromagnetic interference (EMI) shielding effectiveness (SE) of poly(vinylidene fluoride) (PVDF) composites was investigated using carbon nanofiber fillers prepared by catalytic chemical vapor deposition of various carbon-containing gases over Ni and Ni-Cu catalysts. The electrical conductivity of carbon nanofiber which was regarded as the key property of filler for the application of EMI shielding ranged from 4.2 to 22.4 S/cm at a pressure of 10000 psi. The electrical conductivity of carbon nanofiber/PVDF composites ranged from 0.22 to 2.46 S/cm and the EMI SE of those was in the range of 2∼13 dB. The electrical conductivity of carbon nanofibers increased with the increase in heat treatment temperature and time, while the electrical conductivity of the composites increased rapidly at the initial heat treatment and then approached a certain value with the further increase of heat treatment. The SE of the composites showed a maximum at the medium heat treatment and was proportional to the electrical conductivity of the composites. It was concluded that the specific surface area of carbon nanofibers decreased with the continual heat treatment and the specific surface area of filler was an important factor for the SE of the composites.

  • PDF

Treatment Characteristics of Fluoride Wastewater by Waste Gypsum as a Precipitant (폐석고 침전제를 이용한 불소폐수 처리특성)

  • Kim, Sung-Joon;Jeon, Yong-Tae;Won, Chan-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.919-925
    • /
    • 2010
  • The features of precipitating reaction of fluoride have been examined by employing waste gypsum as a precipitant. The major component of waste gypsum was examined to be CaO with minor components of $SO_3$, $SiO_2$. In the experimental condition, the precipitating reaction of fluoride progressed rapidly within a few minutes after the reaction started and reached its equilibrium in 10 minutes. Kinetic analysis showed that the precipitating reaction of fluoride generally followed a first Oder and second Oder with decreasing rate constant with the initial dosage of precipitant. XRD analysis showed that the crystalline structure of precipitate was mainly $CaF_2$ with partly $Ca_5(PO_4)_3(OH)$.

Effect of Fluoridated Bleaching Agents and Post-treatment Fluoride Application on the Color and Microhardness of Enamel Surface (불소를 함유한 치아미백제가 치아 표면의 색과 미세경도에 미치는 영향)

  • Shim, Youn-Soo;Jung, Sang-Hee
    • Journal of dental hygiene science
    • /
    • v.10 no.4
    • /
    • pp.295-300
    • /
    • 2010
  • The aim of this study were to elucidate effects of fluoridated bleaching agents and post-treatment fluoride application on the color and microhardness of enamel surface. Twenty freshly extracted human adult molar were each sectioned into halves, the specimens divided and treated according to four experimental groups: 1, untreated controls: 2, treatment with 10% carbamide peroxide (CP) bleaching agent; 3, treatment with 10% CP containing 0.11% fluoride; 4, treatment with 10% CP followed by a 0.9% sodium fluoride gel application. Group 2-4 were compared with the baseline data. treated 8 h per day for 14 days then immersed in distilled water for 2 weeks. Changes in enamel color and microhardness were evaluated on Days 7 and 14. All the bleached enamel specimens revealed increased whiteness and overall color value. Groups 2 and 4 showed significantly decreased enamel microhardness compared to their baseline. The specimens treated with fluoridated bleaching agents showed relatively less reduction in enamel microhardness than those treated with nonfluoridated agents during the bleaching treatment. The addition of fluoride did not impede the tooth whitening. The fluoridated bleaching agents reduced the microhardness loss of enamel.

Inhibitory Effect of Genistein on Agonist-Induced Modulation of Vascular Contractility

  • Je, Hyun Dong;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • The present study was undertaken to determine whether treatment with genistein, the plant-derived estrogen-like compound influences agonist-induced vascular smooth muscle contraction and, if so, to investigate related mechanisms. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Genistein completely inhibited KCl-, phorbol ester-, phenylephrine-, fluoride- and thromboxane $A_2$-induced contractions. An inactive analogue, daidzein, completely inhibited only fluoride-induced contraction regardless of endothelial function, suggesting some difference between the mechanisms of RhoA/Rho-kinase activators such as fluoride and thromboxane $A_2$. Furthermore, genistein and daidzein each significantly decreased phosphorylation of MYPT1 at Thr855 had been induced by a thromboxane $A_2$ mimetic. Interestingly, iberiotoxin, a blocker of large-conductance calcium-activated potassium channels, did not inhibit the relaxation response to genistein or daidzein in denuded aortic rings precontracted with fluoride. In conclusion, genistein or daidzein elicit similar relaxing responses in fluoride-induced contractions, regardless of tyrosine kinase inhibition or endothelial function, and the relaxation caused by genistein or daidzein was not antagonized by large conductance $K_{Ca}$-channel inhibitors in the denuded muscle. This suggests that the RhoA/Rho-kinase pathway rather than $K^+$- channels are involved in the genistein-induced vasodilation. In addition, based on molecular and physiological results, only one vasoconstrictor fluoride seems to be a full RhoA/Rho-kinase activator; the others are partial activators.

Effect of Fluoride Treatment after Bleaching with Hydrogen Peroxide exposed to Plasma Arc (고농도 과산화수소와 플라즈마 아크를 이용한 미백 치료에 있어서 불소의 효과)

  • Chung, Sun-Young;Lee, Young-Eun;Ahn, Sang-Hun;Yang, Hae-Young;Jeon, Eun-Suk;Choi, Youn-Hee;Song, Keun-Bae
    • Journal of dental hygiene science
    • /
    • v.11 no.4
    • /
    • pp.375-380
    • /
    • 2011
  • This study evaluated whether fluoride treatment can affect recovery of the irregularity of enamel surface after tooth whitening with a high concentration of hydrogen peroxide (HP) activated by plasma arc light. A total of 36 bovine teeth stained with coke were used in this experiment. The specimens were classified into following three groups (two different commercial plasma arc groups and a control group without light curing source): (1) 35% HP gel only, (2): 35% HP gel and Plasma arc A, and (3) 35% HP gel and Plasma arc B. To measure color changes and surface morphologies before and after the bleaching, colorimeter and scanning electron microscopy were used, respectively. When the specimens were bleached with hydrogen peroxide and plasma arc lights, the bleaching effect was greater than when only hydrogen peroxide gels were used (Kruskal-Wallis test, p<0.05). In addition, plasma arc B showed the more color changes than plasma arc A (Bonferroni post-hoc test, p<0.05). The surfaces of the teeth treated with fluoride gel after the whitening treatment came to be smooth. Therefore, the results of this study suggested that the fluoride application for patients who got tooth whitening therapy with a high concentration of hydrogen peroxide gels activated by plasma arc light will be effective to recover rough enamel surfaces.

Optimum Condition for Fluoride Removal Prior to the Application of Struvite Crystallization in Treating Semiconductor Wastewater (Struvite 결정화를 이용한 반도체 폐수처리 시 불소제거를 위한 최적 조건)

  • An, Myeong Ki;Woo, Gwi Nam;Kim, Jin Hyung;Kang, Min Koo;Ryu, Hong Duck;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.916-921
    • /
    • 2009
  • This study was aimed to both enhance the fluoride removal and to reduce the phosphorus removal in treating semiconductor wastewater using $Ca(OH)_2$ at low pH so as to facilitate struvite crystallization reaction. The struvite crystallization could be introduced after fluoride removal by retaining the phosphorus source. As the results, the method applied in this study achieved high fluoride removal efficiency (about 91%) with retardation of phosphorus removal at pH 4, compared to conventional methods where the removal of fluoride and phosphorus were done at pH 11. Therefore, the fluoride removal at low pH would contribute to the enhancement of nitrogen and phosphorus removals in a consecutive struvite crystallization reactor. Treatment of semiconductor wastewater at low pH using $Ca(OH)_2$ also had lower (about 20%) water content of precipitated sludge compared to conventional method. As the molar ratio of Ca to F increased the removal efficiencies of fluoride and phosphorus increased. Although the amount of seed dosage didn't affect the removal of fluoride and phosphorus, its increase reduced the water content of precipitated matter. Finally, considering consecutive struvite reaction, the optimum condition for the removal of fluoride and phosphorus was as follow: pH: 4, the molar ratio of Ca:F: 1:1.

COMPARATIVE STUDY ON FLUORIDE RELEASE AND RE-UPTAKE CAPACITY OF SEVERAL FLUORIDE-RELEASING RESTORATIVE MATERIALS (수종의 수복재의 불소 적용법에 따른 불소 유리에 관한 비교 연구)

  • Lee, Yeon-Ho;Yoo, Seung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.25-34
    • /
    • 2006
  • Fluoride released from dental restorative materials effectively declines the incidence and activity of dental caries and inhibits tooth demineralization. This study investigated the fluoride release and uptake characteristics of one composite resin $(Z-250^{TM})$ three glass ionomer-based restorative material ($Dyract^{(R)}$ AP, Fuji II $LC^{(R)}$, Fuji IX GP $Fast^{(R)}$) Forty discs(6mm diameter and 1mm height) were prepared for each material. Each disc was immersed in 5ml of distilled water within polyethylene vial and stored at $37^{\circ}C$. The distilled water was changed every 24 hours and the release of fluoride was measured for 31 days. At the end of this period, each specimen was subjected to one of four treatments : (A) no fluoride treatment (control), (B) application of a fluoride dentifrice (500ppm) for three minutes three times; (C) application of the 1.23% acidulated phosphate fluoride(APF) foam for one minute once, (D) the same regimen as (B), plus application of the APF foam for one minute once. Then, all samples were reassessed for an additional 7 days. For all samples, the greatest fluoride release was observed after the first day of the study but diminished with time. On the 7th day of the study, fluoride release level was stabilized. Fuji II $LC^{(R)}$ and Fuji IX GP $Fast^{(R)}$ released higher amount of fluoride than other materials ; however, no statistically significant difference was found from Fuji II $LC^{(R)}$ and Fuji IX GP $Fast^{(R)}$. The amount of fluoride of $Dyract^{(R)}$ AP, Fuji II $LC^{(R)}$ and Fuji IX GP $Fast^{(R)}$ was increased after fluoride treatment, and diminished with time.

  • PDF

Treatment of Mixed Fluoride Wastewater Using Cement Paste (시멘트 페이스트를 이용한 혼합 불산폐수 처리)

  • Byun, Hye-Jung;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.909-914
    • /
    • 2007
  • Fluorine compounds are the essential chemicals for wet processes of semiconductor and LCD production line. Problems of conventional treatments for fluoride wastewater are their high operation costs and low fluoride removal capacity. In this study, cement paste containing various Ca-bearing hydrates such as portlandite, calcium silicate hydrate(CSH), and ettringite was investigated for fluoride removal. The objectives of this study are to assess the feasibility of using cement paste cured mixture of cement and water as an alternative agent for treatment of fluoride wastewater and to investigate fluoride removal capacity of the cement paste. The performance of cement paste was comparable to that of lime in the kinetic test. In column experiment where the effluent fluoride concentrations were below 0.5 mg/L. Then the leached calcium reached the maximum level of 800 mg/L. The nitrate reduced to the level of less than 10 mg/L. Nitrate in the wastewater was exchanged with interlayer sulfate of these cement hydrate LDHs. Phosphate concentration could be reduced to 10 mg/L by forming calcium phosphate. These results indicate that the cement paste generally has advantageous characteristics as an economical and viable substitute for lime to remove fluoride.

EFFECTS OF LASER AND FLUORIDE TREATMENT ON THE RESISTANCE TO MICROORGANISM AND ACID IN ARTIFICIAL CARIOUS LESION (레이저와 불소가 인공우식병소의 항균성 및 내산성에 미치는 영향에 관한 연구)

  • Yoo, Jeong-Min;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.2
    • /
    • pp.405-421
    • /
    • 1997
  • The main purpose of this study was to evaluate the acid resistance and antimicrobial effect of fluoride-laser combined application. Recently extracted third molars were used. $5{\times}3mm$ of the buccal and lingual specimens were exposed and incipient artificial carious lesions were formed by keeping them in the artificial cariogenic solution for 5 days. They were divided into five groups and treated with fluoride and laser according to the predetermined regimen. The acid resistance was compared between groups by chemical quantitative analysis of the calcium and phosphorous released into the test solution after single or combined application of fluoride and laser. The antimicrobial effect of each group was analyzed by counting the number of colony forming units after microbial incubation. The results from the present study can be summarized as follows; 1. Experimental groups showed lower values in calcium and phosphorous contents as well as in $CFU/m{\ell}$(colony forming units) than control group. Combined application groups showed lower values than single application groups. 2. Acid resistance and antimicrobial effect by fluoride and laser treatment were confirmed in this study. 3. Based upon the above-mentioned results of this study, it can be assumed that the use of laser-fluoride combined application may provide the child and adolescent patient population with antimicrobial effect as well as acid resistance. Further studies using various materials and experimental conditions are being encouraged.

  • PDF

Enhancement effect of phosphate and silicate on water defluoridation by calcined gypsum

  • Al-Rawajfeh, Aiman Eid;Alrawashdeh, Albara I.;Aldawdeyah, Asma;Hassan, Shorouq;Qarqouda, Ruba
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.35-49
    • /
    • 2013
  • Research work on removal of fluoride from water, referred to as water defluoridation, has resulted into the development of a number of technologies over the years but they suffer from either cost or efficiency drawbacks. In this work, enhancement effects of phosphate and silicate on defluoridation of water by low-cost Plaster of Paris (calcined gypsum) were studied. To our knowledge, the influence of silicate on defluoridation was not reported. It was claimed, that the presence of some ions in the treated water samples, was decreasing the fluoride removal since these ions compete the fluoride ions on occupying the available adsorption sites, however, phosphate and silicate ions, from its sodium slats, have enhanced the fluoride % removal, hence, precipitation of calcium-fluoro compounds of these ions can be suggested. Percentage removal of $F^-$ by neat Plaster is 48%, the electrical conductance (EC) curve shows the typical curve of Plaster setting which begins at 20 min and finished at 30 min. The addition of phosphate and silicate ions enhances the removal of fluoride to high extent > 90%. Thermodynamics parameters showed spontaneous fluoride removal by neat Plaster and Plaster-silicate system. The percentage removal with time showed second-order reaction kinetics.