• Title/Summary/Keyword: fluorescent substance

Search Result 43, Processing Time 0.03 seconds

Electrical and Optical Characteristics by Ferrite for Electrodeless Fluorescent Lamp (무전극 형광램프용 페라이트에 따른 전기적 및 광학적 특성)

  • Pack Kwang-Hyeon;Yang Jong-Kyung;Lee Jong-Chan;Park Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.200-206
    • /
    • 2006
  • An electric power efficiency of electrodeless fluorescent lamp depens on a big relative property of gas, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. in lamp. We used magnetic substance that opens self-examination material of electrodeless fluorescent lamp antenna. We used Mn-Zn type as the Ferrite. We have examined resistance, impedance and Q-factor's frequency characteristic by ferrite. Coil turns were changed from 13 to 15 turns to recognize brightness change of lamp by winding number. Optical equipment (LS-100) was used to measure brightness. We could know Q-factor's difference according to material is important part of antenna design. When an electrodeless fluorescent lamp was made using T company's PE22, it showed the highest brightness. As number of winding is increased the brightness increased, and starting characteristic became good.

Impedance and Q-factor of frequence dependance accoding to ferrites on electrodeless fluorescent lamp (무전극 형광램프의 페라이트 종류에 따른 임피던스 및 Q-Factor의 주파수 의존성)

  • Kim, Hoe-Geun;You, Dae-Won;Park, Sung-Mook;Pack, Gwang-Hyeon;Choi, Young-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.3-7
    • /
    • 2004
  • An electric power efficiency of electrodeless fluorescent lamp has big relativie property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined resistance kind, impedance, Q-factor's frequency characteristic by ferrite. Impedance, resistance and capacitance did not show difference in start frequency 2.65 [MHz] but there was difference quantity. We could know Q-factor's difference according to material, and Q-factor's is important part of antenna design.

  • PDF

Brightness special Quality change of wireless electrodeless fluorescent lamp by ferrite change (페라이트 변화에 따른 무전극 형광램프의 휘도 특성 변화)

  • Pack, Gwang-Hyoen;Yang, Jong-Kyung;Lee, Jong-Chang;Choi, Yung-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.171-176
    • /
    • 2004
  • An electric power efficiency of electrodeless fluorescent lamp has big relative propertye of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. Coill turn was changed from 13th to 15th turn to recognize brightness change of lamp by winding number. Optical equipment that used in an experiment was used to measure brightness (LS-100). When an electrodeless fluorescent lamp was made using and T company's PE22, was it showed the highest brightness. As number of winding is increased the brightness increased, and starting characteristic became good.

  • PDF

Trend on the Recycling Technologies for Spent fluorescent lamps by the Patent and Paper Analysis (특허(特許)와 논문(論文)으로 본 폐 형광램프 재활용(再活用) 기술(技術) 동향(動向))

  • Rhee, Seung-Whee;Park, Hun-Su;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.76-85
    • /
    • 2012
  • Fluorescent lamps generally involve mercury within their lamp bulbs. Thus if the lamps are disposed as they are, it might cause environmental pollution. On the other hand, as the life of the lamps depends on the degradation of the discharge performance, the fluorescent substance composing the fluorescent substance coating can be recycled by reusing them as the recycled fluorescent substance. Also, the glass material composing the glass bulbs can be reused. The range of search was limited in the open patents of USA (US), European Union (EU), Japan (JP), Korea (KR) and SCI journals from 1977 to 2011. Patents and journals were collected using key-words searching and filtered by filtering criteria. The trends of the patents and journals was analyzed by the years, countries, companies, and technologies. Recovery method of metals from spent fluorescent lamps is mainly the focus on the recovery of precious metals using acid treatment and, detoxification technology is related with controlling process of mercury using a filter system.

Properties of Temperature and Brightness Applied on Frequency in Electrodeless Fluorescent Lamp (무전극 형광램프의 주파수 변화에 따른 온도 및 광속 특성)

  • Lee, Joo-Ho;Choi, Gi-Seung;Kim, Nam-Goon;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.607-608
    • /
    • 2006
  • In recent, it became necessary to develop the technology about electrodeless fluorescent lamp according to demand of the electrodeless fluorescent lamp system that used higher efficiency and advantage of long lifetime. Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined temperature and flux characteristic by frequency. Considering using frequency 2.65[MHz], Frequency was changed from 2.05(MHz) to 3.05[MHz] to recognize flux and temperature change of lamp. I used LMS(Lighting Measurement System) to measure flux and IR Camera to measure temperature of lamp.

  • PDF

Properties of Temperature and Brightness Applied on Frequency in Electrodeless Fluorescent Lamp (무전극 형광램프의 주파수 변화에 따른 온도 및 광속 특성)

  • Lee, Joo-Ho;Choi, Gi-Seung;Kim, Nam-Goon;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2239-2240
    • /
    • 2006
  • In recent, it became necessary to develop the technology about electrodeless fluorescent lamp according to demand of the electrodeless fluorescent lamp system that used higher efficiency and advantage of long lifetime. Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined temperature and flux characteristic by frequency. Considering using frequency 2.65[MHz], Frequency was changed from 2.05[MHz] to 3.05[MHz] to recognize flux and temperature change of lamp. I used LMS(Lighting Measurement System) to measure flux and IR Camera to measure temperature of lamp.

  • PDF

Properties of Temperature and Brightness Applied on Frequency in Electrodeless Fluorescent Lamp (무전극 형광램프의 주파수 변화에 따른 온도 및 광속 특성)

  • Lee, Joo-Ho;Choi, Gi-Seung;Kim, Nam-Goon;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1273-1274
    • /
    • 2006
  • In recent, it became necessary to develop the technology about electrodeless fluorescent lamp according to demand of the electrodeless fluorescent lamp system that used higher efficiency and advantage of long lifetime. Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined temperature and flux characteristic by frequency. Considering using frequency 2.65[MHz], Frequency was changed from 2.05[MHz] to 3.05[MHz] to recognize flux and temperature change of lamp. I used LMS(Lighting Measurement System) to measure flux and IR Camera to measure temperature of lamp.

  • PDF

Properties of Temperature and Brightness Applied on Frequency in Electrodeless Fluorescent Lamp (무전극 형광램프의 주파수 변화에 따른 온도 및 광속 특성)

  • Lee, Joo-Ho;Choi, Gi-Seung;Kim, Nam-Goon;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1733-1734
    • /
    • 2006
  • In recent, it became necessary to develop the technology about electrodeless fluorescent lamp according to demand of the electrodeless fluorescent lamp system that used higher efficiency and advantage of long lifetime. Inductively coupled plasma is commonly used for electrodeless lamp due to its ease of plasma generation. An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined temperature and flux characteristic by frequency. Considering using frequency 2.65[MHz], Frequency was changed from 2.05[MHz] to 3.05[MHz] to recognize flux and temperature change of lamp. I used LMS(Lighting Measurement System) to measure flux and IR Camera to measure temperature of lamp.

  • PDF

Brightness Property by Ferrite on Electroness Flurescent Lamp (무전극 형광램프용 페라이트에 따른 휘도특성)

  • Pack, Gwang-Hyeon;Lee, Jong-Chan;Choi, Young-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.607-610
    • /
    • 2004
  • An electric power efficiency of electrodeless fluorescent lamp has big relativie propertye of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self-examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. Coill turn was changed from 13th to 13th turn to recognize brightness change of lamp by winding number. Optical equipment that used in an experiment was used to measure brightness (LS-100). When an electrodeless fluorescent ]amp was made using and T company's PE22, was it showed the highest brightness. As number of winding is increased the brightness increased, and starting characteristic became good.

  • PDF

Impedence and Q-factor of frequence dependance accoding to ferrites on electrodeless fluorescent lamp (무전극 형광램프의 주파수에 따른 임피던스 및 Q-factor 변화 연구)

  • Pack, Gwang-Hyoen;Yang, Jong-Kyung;Lee, Jong-Chan;Choi, Jong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.153-156
    • /
    • 2004
  • An electric power efficiency of electrodeless fluorescent lamp has big relative property of gas in lamp, gas pressure, lamp formation, ingredients of magnetic substance and shape and action frequency etc. We used magnetic substance that open self examination material of electrodeless fluorescent lamp antenna. Ferrite that is used in this experiment was Mn-Zn type. We have examined resistance kind, impedance, Q-factor's frequency characteristic by ferrite. Impedance, resistance and capacitance did not show difference in start frequency 2.65 [MHz] but there was difference quantity. We could know Q-factor's difference according to material, and Q-factor's is important part of antenna design.

  • PDF