• Title/Summary/Keyword: fluorescence sensor

검색결과 136건 처리시간 0.023초

Solvatochromic Fluorescence Behavior of 8-Aminoquinoline-Benzothiazole: A Sensitive Probe for Water Composition in Binary Aqueous Solutions

  • Kim, Young-Hee;Youk, Jin-Soo;Kim, So-Hee;Chang, Suk-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.47-50
    • /
    • 2005
  • Solvatochromic fluorescence behavior of 8-aminoquinoline based benzothiazole derivative in varying solvent systems has been investigated. Benzothiazole appended 8-aminoquinoline 3 showed distinctive fluorescence color changes depending upon the solvent polarities and the fluorescence color changes occurred over relatively wide span in visible region from 486 nm to 598 nm which can be detected with naked eye. Compound 3 also exhibited significant spectral shifts in ${\lambda}_{em}$ as a function of water composition in binary aqueous solvent systems. The changes are due to the specific interaction of 3 by hydrogen bonding with water as well as general solvent effect. The observed solvatochromic fluorescence characteristics of 3 could be used as a new probe for the micro-environmental polarity changes as well as a sensitive sensor for the determination of water composition in binary aqueous solutions.

A Quinoline-thiooxorhodamine Conjugate for Fluorescent Hg2+ Recognition in Aqueous Media and Living Cells

  • Tang, Lijun;Wen, Xin;Dai, Xin;Wu, Di;Huang, Zhenlong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3326-3330
    • /
    • 2014
  • A quinoline-thiooxorhodamine conjugate fluorescent sensor (1) has been synthesized. Sensor 1 exhibits high selectivity and sensitivity to $Hg^{2+}$ in $H_2O$/DMSO (95/5, v/v, HEPES 20 mM, pH = 7.4) solution with fluorescence detection. Other tested metal ions do not induce any significant fluorescence intensity changes. Sensor 1 interacts with $Hg^{2+}$ through a 1:1 binding stoichiometry with a good anti-inference ability. In addition, fluorescent imaging of $Hg^{2+}$ in Hela cells is also successfully demonstrated.

RNA 형광 검출을 위한 Finger형 PIN 광다이오드의 제작 및 평가 (Development and Characterization of Finger-type PIN Photodiode for Fluorescence Detection of RNA)

  • 김주환;오명환;주병권
    • 센서학회지
    • /
    • 제13권2호
    • /
    • pp.85-89
    • /
    • 2004
  • This paper represents the development of high sensitivity photo-sensor for the fluorescence detection in the integrated biological analysis system. The finger-type PIN photodiodes were fabricated as the photo-sensor, and had a high sensitivity ($I_{light}/I_{dark}$ = 8720). The interference filter consisted of $TiO_{2}$ and $SiO_{2}$ was directly deposited on the photodiodes. Deposited filter with 95.5% reflection under 532 nm and 98% transmission over 580 nm exceedingly decreased the magnitude of background signal in the detection. The PDMS micro-fluidic channels are bonded on the photodiode by $O_{2}$ plasma treatment. The detection current was proportional to two primary parameters (light intensity, concentration), and the on-chip detection system could detect fluorescence signals down to 100 nM concentration (LOD = Limit of detection of rhodamine).

HPTS, Rudpp를 활용한 pH 및 용존산소 모니터링 시스템 연구 (Development of a pH/dissolved- oxygen Monitoring System Using HPTS and Rudpp)

  • 정동혁;정대웅
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.82-87
    • /
    • 2023
  • This study proposes a pH-dissolved-oxygen monitoring system using 8-HydroxyPyrene-1,3,6-trisulfonic acid Trisodium Salt (HPTS) and tris(4,7-diphenyl-1,10-phenanthroline)Ruthenium(II) chloride (Rudpp). Commercial water-quality sensors are electrochemical devices that require frequent calibration and cleaning, are subject to high maintenance costs, and have difficulties conducting measurements in real-time. The proposed pH-dissolved-oxygen monitoring system selects a thin-film sensing layer to measure the change in fluorescence intensity. This change in fluorescence intensity is based on reactions with hydrogen ions in an aqueous solution at a given pH and specific amount of dissolved oxygen. The change in fluorescence intensity is then measured using light-emitting diodes and photodiodes in response to HPTS and Rudpp. This method enables the development of a relatively small, inexpensive, and real-time measureable water-quality measurement system.

Aggregation-Induced Emission (AIE) 기반의 Turn-On 형광센서를 이용한 수질 속 중금속 납 이온의 효율적인 검출 (Efficient Detection of Heavy Metal Lead Ions in Aqueous Media using Aggregation-Induced Emission (AIE)-based Turn-on Fluorescence Sensor)

  • 최해민;성현정;차주연;이성호
    • 한국환경과학회지
    • /
    • 제32권11호
    • /
    • pp.757-765
    • /
    • 2023
  • Lead, a heavy metal widely employed in various industries, continues to pose a threat to both human health and the environment. Therefore, the development of a sensor capable of rapidly and accurately detecting lead(II) ions in real-time at contaminated sites is crucial. In this study, we have engineered a fluorescent sensor with the ability to efficiently detect lead(II) ions under actual environmental conditions, including tap water and freshwater. The compound, tetraphenylethylene carboxylic acid derivative (TPE-COOH), exhibits high selectivity and sensitivity toward lead(II) ions in aqueous solution, where the interaction between TPE-COOH and lead(II) ions leads to its aggregation, thus triggering a fluorescence "turn-on" based on the aggregation-induced emission (AIE) mechanism. Impressively, compound TPE-COOH proficiently detects lead(II) ions within a range of 30 to 100 𝜇M in tap water and freshwater, even in the presence of various interfering substances.

A Simple Benzimidazole Based Fluorescent Sensor for Ratiometric Recognition of Zn2+ in Water

  • Zhong, Keli;Cai, Mingjun;Hou, Shuhua;Bian, Yanjiang;Tang, Lijun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.489-493
    • /
    • 2014
  • A phenylbenzimidazole derivatized sensor (L) that behaves as a ratiometric fluorescent receptor for $Zn^{2+}$ in water has been described. In HEPES buffer at pH 7.4, sensor L displays a weak fluorescence emission band at 367 nm. Upon addition of $Zn^{2+}$, the emission intensity at 367 nm is decreased, concomitantly, a new emission band centered at 426 nm is developed, thus facilitates a ratiometric $Zn^{2+}$ sensing behavior. Sensor L binds $Zn^{2+}$ through a 1:1 binding stoichiometry with high selectivity over other metal cations. Sensor L displays a linear response to $Zn^{2+}$ concentration from 0 to $6.0{\times}10^{-5}M$, sensor L also exhibits high sensitivity to $Zn^{2+}$ with a detection limit of $3.31{\times}10^{-7}M$.

복수 경로를 지닌 자외선 형광측정기를 이용한 오일 산화도 측정장치 (Apparatus for Monitoring Oil Oxidation Using a Plurality of UV Fluorescence Light-reflecting Members)

  • 공호성;한흥구
    • Tribology and Lubricants
    • /
    • 제26권3호
    • /
    • pp.167-174
    • /
    • 2010
  • An apparatus for measuring oil oxidation was developed, which is capable of being mounted to mechanical devices for detecting power of fluorescent light reflected from oil in real time as an indication of the oil oxidation. This device has an advantage over conventional fluorescence spectrometers where the thin film is required for the measurement. Clean and used oil samples (mineral and synthetic oils) were tested by the developed apparatus that calculates a fluorescence quantum yield and a light absorption coefficient of the oil based upon the signals from the two light-receiving members and evaluates the degree of oil oxidation of test oils based on the fluorescence quantum yield. Results generally show that the developed device is able to effectively evaluate oil oxidation characteristics on-site in the field.

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

하천수 BOD 예측을 위한 용존 자연유기물질의 synchronous 형광 스펙트럼 분석 (Examining Synchronous Fluorescence Spectra of Dissolved Organic Matter for River BOD Prediction)

  • 허진;박민혜
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.236-243
    • /
    • 2007
  • Fluorescence measurements of dissolved organic matter (DOM) have the superior advantages over other analysis tools for the applications to water quality management due to their rapid analysis. It is known that protein-like fluorescence characteristics are well corelated with microbial activities and biodegradable organic matter. In this study, potential biochemical oxygen demand (BOD) predictor were explored using the fluorescence peak intensities and/or the integrated fluorescence intensities derived from synchronous fluorescence spectra and the first derivative spectra of river samples. A preliminary study was conducted using a mixture of a river and a treated sewage to test the feasibility of the approach. It was demonstrated that the better BOD predictor can be derived from synchronous fluorescence spectra and the derivatives when the difference between the emission and the excitation wavelengths (${\Delta}{\gamma}$) was large. The efficacy of several selected fluorescence parameters was rivers in Seoul. The fluorescence parameters exhibited relatively good correlation coefficients with the BOD values, ranging from 0.59 to 0.90. Two parameters were suggested to be the optimum BOD predictors, which were a fluorescence peak at a wavelength of 283 nm from the synchronous spectrum at the ${\Delta}{\gamma}$ value of 75 nm, and the integrated fluorescence intensity of the first derivatives of the spectra at the wavelength range between 245 nm and 280 nm. Each BOD predictor showed the correlation coefficients of 0.89 and 0.90, respectively. It is expected that the results of this study will provide important information to develop a real-time efficient sensor for river BOD in the future.