• Title/Summary/Keyword: flume experiment

Search Result 66, Processing Time 0.022 seconds

Flume Experiments on Channel Morphology at a Tributary Junction (하천 합류점의 하도형상에 관한 수로실험)

  • Taeho Kim
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.3
    • /
    • pp.355-364
    • /
    • 1998
  • Flume experiments are conducted to describe the channel morphology at a tributary junction and to examine the influence of channel arrangements and hydrologic conditions on the channel morphology. When flow momenta of two tributaries are equal, a receiving stream tends to align with an axis bisecting junction angle. It causes lateral migration of a receiving stream according to an initial channel arrangement. As a result, the post-fonfluent channel morphology varies with plan geometry of a confluence such as symmetry, transition and asymmetry. Bed scour is the most notable morphology within a junction site. Its shape is characterized by steep walls which are primarily influenced by junction angle. Key control of scour dimension is also junction angle. Although the principle of accordant junction has been undoubtedly accepted, discordance is commonly developed at model and natural stream confluences. Unit discharge ratio of confluent streams is the most crucial factor because both discharge and sediment concentration ratios have an effect on discordance at a junction.

  • PDF

Change of Water Discharge Capability of Sluice Caisson for Tidal Power Plant According to Installation of Rubble Mound (사석마운드 설치에 따른 조력발전용 수문의 통수성능 변화)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyu-Sang;Kim, Duk-Gu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.266-269
    • /
    • 2008
  • In this study, the results of experimental investigation on the water discharge capability of sluice caisson for tidal power plant were presented. In particular, the focus of the study was placed on the examination of change in water discharge capability of a sluice caisson according to the installation of rubble mound. For this purpose, a hydraulic experiment was carried out in an open channel flume with a great care to the measurement of discharge and water level in the flume since they greatly affects the estimation of the discharge capability of each sluice caisson. In the analysis, the experimental data of four different sluice models were used, which showed that the installation of rubble mound affects in different manner depending on each sluice caisson model. When each of the four sluice models were placed on the rubble mound respectively, the water discharge increased for one sluice caisson, whereas decreased for other three sluice caissons. Further detailed analysis is needed to quantitatively estimate the influence of installation of rubble mound on the water discharge capability of a sluice caisson.

  • PDF

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.

A Study on Surface Drift Velocity in Water Waves (파랑에 의한 수표면 부유속도에 관한 연구)

  • 김태인;최한규;권혁재
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.329-339
    • /
    • 1995
  • To clarify the surface drift velocity in gravity waves. experimental data measured in a two-dimensional wave flume were compared with theoretical values predicted by the Stokes 2nd- and 5th- order theories as well as by the conduction solution or Longuet-Hinggins (1953). Relative water depth and wave height ranged 0.040.13. For a closed flume condition, Stokes 2nd-order theory gives lower values than the experimental data, and the differences increase as both relative water depth and wave height increase. Based on the observed data of the surface drift velocities, a modified Parabolic model of the return current velocity Profile has been suggested, which is Proved to fit better to the existing experimental data of mass transport velocity profiles in a closed wave flume than the models of Longuet-Hinggins (1953) and Stokes wave theories do.

  • PDF

Energy Dissipation of Water Flow over a Drop

  • Lee, Jiyong;Lim, Yosup;Jang, Jinhee;Kang, Seokkoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.375-379
    • /
    • 2016
  • Recently derived energy dissipation equation by Chamani(2008) and the profile function of the free overfall by Marchi(1993) were verified with present experiment data. The experiment was conducted in hydraulic laboratory, Hanyang University where the flume is 7m long and 0.44m wide, and the height of the drop structure is 0.205m. Water depth and free overfall profile data were collected using an ultra sonic distance sensor and photographic images. The time-averaged water depth data and the free overfall profile were analyzed to examine the energy dissipation pattern over the drop structure

  • PDF

Physical Experiment on Water Discharge Capability of Sluice Caisson for Tidal Power Plant (조력발전용 수문케이슨의 통수성능에 관한 수리모형실험)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyyu-Sang;Ahn, Suk-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.514-517
    • /
    • 2008
  • An hydraulic experiment was carried out in an open channel flume in order to investigate the water discharge capability of the sluice caisson for tidal power generation, which greatly affects the economical efficiency of the construction of a tidal power plant. To predict the influence of change in the major design parameters relating to the sluice shape on the water discharge capability of the sluice, the experiment was carried out very precisely. The experiment was carried out for the six different sluice models of different widths and bottom heights of the sluice throat section. The experimental data showed that the water discharge generally increased by increasing the width of the throat section if the side shape of the sluice was the same. In addition, the coefficient of discharge was larger when the bottom height of the throat section was higher for the two bottom heights that were tested.

  • PDF

Numerical Simulation and Laboratory Experiment of Flooding on a Perpendicular Floodplain with Dam-Break Flows (댐 붕괴 흐름에 의한 직립 홍수터의 범람 실험 및 모의)

  • Hwang, Seung-Yong;Kim, Hyung Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • Numerical simulation with Hwang's scheme, which can analyze shallow-water flow over discontinuous topography, was compared with a laboratory experiment of flooding on a perpendicular floodplain with dam-break flows. The simulation results were in good agreement with the results measured in an experimental flume with a reservoir, channel, and floodplain. The wetting and drying process on a perpendicular floodplain with a dam-break flow was particularly well simulated. The difference in simulation results according to the type of flow resistance was insignificant. The results of this study are expected to improve the accuracy of predicting inundation in urban rivers.

Experimental Study of Changes in Channel Characteristics at Stream Confluences (하천합류점의 하도특성치 변화에 관한 실험적 연구)

  • Kim, Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.4
    • /
    • pp.421-434
    • /
    • 1997
  • Flume experiments are conducted to describe channel adjustments at stream confluences and to examine some factors to which changes in channel characteristics are subject. There are different factors controlling channel size and shape; shereas the fomer is primarily controlled by water discharge alone, the latter including channel slope is influenced by sediment load as well as water discharge. The morphometric adjustments of confluent tributaries can be consequently classified into three types based upon changes in sediment concentration which are associated with the relative increasing rates of water discharge and sediment load at these sites. Flow is accelerated at stream confluences due to the convergence of confluent flows, causing an sharp increase in velocity. It restrains an increase in channel capacity, and furthers a decrease in channel slope, of a receiving stream. As a result, effects of slight increases in sediment concentration hardly appear on changes in channel characterisitics at stream confluences.

  • PDF

Performance Evaluation of Concrete Bench Flume Using Industrial by Products (산업부산물을 이용한 콘크리트 벤치플룸의 성능평가)

  • Jae-Ho Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.276-281
    • /
    • 2023
  • Water pipes manufactured using existing Portland cement suffer from the problem of rapid deterioration and reduced durability due to the hydration product of cement being vulnerable to acids. Therefore, in this study, water pipes were manufactured using slag and fly ash, which are industrial by-products from various industries, and their characteristics were analyzed. As a result of the experiment, slump in unhardened concrete tended to increase due to the ball bearing action of fly ash, and the amount of air was reduced due to unburned coal, indicating that measures for frost resistance were needed. In addition, the initial strength of the compressive strength was increased through steam curing, and the results were equal to or better than OPC when mixing more than 50 % of slag. The acid resistance results showed that the mass reduction rate was less than 5 %, showing excellent durability performance, and the bending failure load of the water pipe also exceeded the KS standards, so it is judged to be commercializable.

Evaluating Stability and Functionality of Hybrid Erosion Control Dam for Reducing Debris Flow Damage in Forested Catchment Nearby Urban Area (도시생활권의 토석류 피해 저감을 위한 복합형 사방댐의 안정성 및 기능성 평가)

  • Kim, Kidae;Kim, Dongyeob;Seo, Junpyo;Lee, Changwoo;Woo, Choongshik;Kang, Minjeng;Jeong, Sangseom;Lee, Dongkyun
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.59-70
    • /
    • 2018
  • The objective of this study was to develop erosion control dam for preventing disaster in consideration of characteristics of forested catchment near urban area, and to assess its stability and functionality to see its practicability in the field. Two types of hybrid erosion control dams were developed including debris flow prevention dam by using pillar and float board screen type and debris flow control dam by using groyne. Also, review about their static (sliding, overturning, bearing capacity) and dynamic (member force) stability was carried out. According to the result, most of the assessed items met standard safety level although there were some cases where assessed items were short of stability criteria against impact. Also, after miniature flume experiments based on the developed erosion control dam to prove structure function (material catch, deposit), it turned out the dam decreased flow sediment amount and velocity while increasing sediment-capturing capacity by 3.5 times on average compared to the one controlled without erosion control dam. When function of erosion control dam for forested catchment near urban area is quantified based on future flume experiments in a variety of conditions, the dams can be practically used in the urban area, contribution to effectively reducing debris flow damage.