• 제목/요약/키워드: fluidized bed biofilm reactor

검색결과 34건 처리시간 0.023초

유동층 생물막 반응기에서의 폐수 탈질화 (Denitrification of Wastewater in a Fluidized Bed Biofilm Reactor)

  • 신승훈;서일순;장인용
    • KSBB Journal
    • /
    • 제16권4호
    • /
    • pp.337-343
    • /
    • 2001
  • 탈질화 유동층 생물막 반응기에 모래와 활성탄 입자를 담체로 사용한 결과 다음과 같은 결론을 얻었다. 1. 정상상태 생물막 두께는 부하율이 증가할수록 증가하였다. 2. 활성탄 담체의. 경우 모래 담에의 경우보다 두꺼운 생물막이 형성되었다. 3. 생물막 건조밀도는 생물막 두께가 증가함에 따라 감소 하였다. 4. 모래담체 유동층 생물막 반응기가 질산성질소 제거효율 및 제거속도 면에서 활성탄담체 유동층 생물막 반응기보다 유리하였다. 5. 모래를 담체로 사용하였을 때 반응기 내 최대 균체량은 37 kg/㎥, 최대 질산성질소 제거속도는 21 kg N/㎥d의 값을 각각 나타내었다.

  • PDF

산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(II) -유기물 충격 부하가 미생물 성장에 미치는 영향- (A Study on an Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(II) -Effect of Organic Shock Loading Rate on Biomass Characteristics-)

  • 안갑환;박영식;최윤찬;김동석;송승구
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.325-330
    • /
    • 1993
  • A number of experiments were conducted in order to investigate the organic removal efficiency and biomass characteristics according to the organic shock loading rate in a fluidized bed biofilm reactor. At the operation conditions of HRT, 8.44 hour, superficial upflow velocity, 0.9 cm/sec and temperature, 22$\pm$$1^{\circ}C$, the removal efficiency of SCOD was founded to be 96.5, 92 and 90 % with the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/m$^3$ㆍday, respectively. Within the F/M ratio ranged 0.4 to 2.0 kgCOD/kgVSSㆍday, the SCOD removal efficiency was shown as 90% at F/M ratio of 2.0 kgCOD/kgVSSㆍday, but the TCOD removal efficiency was 72 % at F/M ratio of 1.8 kgCOD/kgVSSㆍday. The average biomass concentrations were 7800, 14950 and 27532 mg/l on the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/$\textrm{m}^3$ㆍday, respectively. This result was agreed with the fact that more biomass could be produced at high concentration of substrate, but some biomass was detached at the onset of shock and easily acclimated at the shock condition.

  • PDF

Approximated Solution of Model for Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi Jeong-Woo;Min Junhong;Lee Won-Hong;Lee Sang Baek
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권1호
    • /
    • pp.65-70
    • /
    • 2000
  • An approximated analytical solution of mathematical model for the three phase fluidized bed bioreactor (TFBBR) was proposed using the linearization technique to describe oxygen utilization rate in wastewater treatment. The validation of the model was done in comparison with the experimental results. Satisfactory agreement was obtained in the comparison of approximated analytical solution and numerical solution in the oxygen concentration profile of a TFBBR. The approximated solutions for three modes of the liquid phase flow were compared. The proposed model was able to predict the biomass concentration, dissolved oxygen concentration the height of efficient column, and the removal efficiency.

  • PDF

유동층 생물막 반응기를 이용한 고농도 질산성 폐수의 탈질화에 관한 연구 (The High Rate Denitrification of Nitric Acid Wastewater in a Fluidized Bed Biofilm Reactor)

  • 신승훈;김민수;박동일;안재동;장인용
    • 한국환경보건학회지
    • /
    • 제23권1호
    • /
    • pp.95-104
    • /
    • 1997
  • The objectives of this study are to investigate the effect of media on the removal efficiency of nitrate-nitrogen and the biofilm thickness in the fluidized bed biofilm reactor(FBBR) used for the high rate denitrification of nitric acid wastewater. Granular activated carbon(GAC) of 1.274 mm diameter and sand of 0.455 mm diameter were used as the media in the FBBR of 0.05 m diameter and 1.5 m height. As the nitrate-nitrogen concentration of the influent was increased stepwise from 600 to 4800 mg/l, the nitrate- and nitrite-nitrogen concentration of the effluent, biofilm thickness and biofilm dry density were measured to study the effects of media on the denitrification efficiency. The biofilm thickness increased with the substrate loading rate, and the biofilm dry density decreased with the increase of the biofilm thickness. At the influent nitrate-nitrogen concentration of 2400 mg/l, the removal efficiency in the FBBR with GAC was 88%, while that in the FBBR with sand was 99.6%. The biofilm in the FBBR with GAC was so thick, 754.9 $\mu$m, as to increase the mass transfer resistance, compared to that, 143.7 $\mu$m, in the FBBR with sand. The maximum specific denitrification rate in the FBBR with GAC was 15.0 kg-N/m$^3\cdot$ day, while that in the FBBR with sand was 18.0 kg-N/m$^3\cdot$ day. The biomass concentration in the FBBR with sand exhibited the high value 37 kg/m$^3$.

  • PDF

광합성세균 미생물막반응기에 의한 유기성폐수의 처리특성

  • 오광근;이철우;전영중;이재홍
    • 한국미생물·생명공학회지
    • /
    • 제24권6호
    • /
    • pp.738-742
    • /
    • 1996
  • An efficient packed-bed type biofilm reactor charged with immobilized phototrophs was developed to treat organic wastewater at an extremely high volumetric loading rate. The packed bed reactor (PBR) charged with porous ceramic beads was superior to a fluidized-bed reactor suspended with activated carbon powders in terms of many aspects such as BOD removal efficiency, operational stability, and overall economics. For wastewater with BOD concentration as high as 20, 000mg/l, the BOD removal efficiency was maintained above 90% when the hydraulic retention time (HRT) was longer than 1 day. The allowable volumetric BOD loading rate of this reactor (20gBOD/l day) is more than ten-folds higher than that of an ordinary activated sludge method. The behaviour of the reactor was represented well by a Monod type kinetic equation with a maximum specific BOD loading rate(P) of 22.2gBOD/l day and a half saturation constant(K$_{s}$) of 1, 750 mgBOD/l.

  • PDF

혐기성 유동층 반응기에서 층팽창에 따른 처리특성 및 미생물 부착특성 (A Study on the Characteristics of the Treatment with Bed Expansion and the Biomass Attachment in the Start-up of the AFBR)

  • 안재동;정종식;장인용
    • 한국환경보건학회지
    • /
    • 제21권2호
    • /
    • pp.20-26
    • /
    • 1995
  • The objective of this study is to estimate the effect of the bed expansion and the characteristics of attached biomass in the start-up in the anaerobic fluidized bed reactor(AFBR). The fluidized bed reactor was operated with bacteria supported on the bed of granular activated carbon(GAC). The reactor was operated at 35$\circ$C, 5 kg $COD/m^3\cdot day$ at bed expansion varying from 0 to 100% with soluble glucose wastewater(5,000 mg/l). When the effluent reached a steady state at 100% of bed expansion, maximum COD removal efficiency of 87.3% and 0.031 $m^3CH_4/kg COD_{removed}$ were obtained. At higher bed expansion, COD removal efficiency, methane production rate and biogas production rate increased. Especially, at 50% of bed expansion, the efficiency of the treatment increasedg rapidly in the AFBR. The biomass colonized in the pits and crevices of the GAC particle and no complete biofilm was established in the bioreactor during the experiment.

  • PDF

생물막 유동층 반응기에서 미생물 성상에 따른 속도론적 고찰 (A Kinetic Study with Biomass Characteristics in Fluidized-Bed Biofilm Reactor.)

  • 김동석;안갑환이민규송승구
    • KSBB Journal
    • /
    • 제6권2호
    • /
    • pp.115-121
    • /
    • 1991
  • 본 연구의 목적은 생물막 유동층 반응기내에서 높은 유기물 부하를 처리하는데 있어 지지체에 부착된 미생울의 특성과 유기물의 처리효율을 조사하는데 있다. 실험은 글루코오즈를 주 기질로 한 합성폐수를 이용하여, 상향유속은 0.47cm / sec, 체류시간을 5시간, 운전 온도는 $22{\pm}1{\circ}C$, pH는 $7{\pm}0.1$로 일정하게 하고 유기물 부하를 $10kgCOD\;/\;{\textrm{m}^3}$.day에서 $80kgCOD\;/\;{\textrm{m}^3}$.day로 증가시켰을 때, 각각 95%, 73%의 높은 COD 처리효율을 얻었다. 고정 생물막 반응기에 사용된 Andrew의 유기물 제거율 모델을 본 생물막 유동층 반응기에 적용시켜본 결과, 실제 유기물 제거율과 예측한 유기물 제거율은 85% 정도로 일치하였다.

  • PDF

미생물막 유동층 반응기를 이용한 산업폐수 처리에 관하여 (The Treatment of Industrial Wastewater by the Fluidized-Bed Biofilm Reactor)

  • 서명교;서정호;강준수
    • 한국식품과학회지
    • /
    • 제25권1호
    • /
    • pp.69-77
    • /
    • 1993
  • 미생물막 유동층 반응기로 염료공장 폐수의 유기물 처리효율을 고찰하였다. 공장폐수를 2배, 3배 및 6배 희석하여 처리하였던 바, 각 희석배율 모두 F/M비가 0.2에서 0.3으로 증가할 때 처리효율이 급격히 낮아졌다. 한편, 같은 F/M비에서는 희석율이 높을수록 처리효율이 높았으며 수리학적 체류시간이 증가함에 따라서 처리효율도 증가하였다. 6배 희석시 F/M비가 0.2 이하에서 BOD 처리효율이 $90{\sim}97%$로 가장 좋았다. 또 반응기 설계를 위한 통역학적 계수 Y, $k_b$값 및 상관계수 r은 2배 희석시 $Y=0.3365\;k_d=0.03782\;day^{-1}\;r=0.997$, 3배 희석시 $Y=0.3341\;k_d=0.0275\;day^{-1}\;r=0.996$ 및 6배 희석시는 $Y=0.5460\;k_d=0.03434\;day^{-1}\;r=0.998$로 나타났다.

  • PDF

이상 유동층 반응기의 동특성에 관하여 (The Dynamic Characteristics of a Two Phase Fluidized Beds)

  • 서명교;서정호;강준수
    • 한국식품과학회지
    • /
    • 제25권3호
    • /
    • pp.210-213
    • /
    • 1993
  • 본 실험의 목적은 공극률과 상향유속의 관계에서 세입자의 유동특성을 고찰하는 데 있다 Column 내경은 유동층의 유속과 공극률과의 관계에 큰 영향을 미치지 못했으며 유속과 공극률과의 관계는 다음과 같다. $\frac{u}{u_t}={\varepsilon}^{3.703}$----모래$\frac{u}{u_t}={\varepsilon}^{3.5665}$----이온 교환수지$\frac{u}{u_t}={\varepsilon}^{4.066}$---GAC 또 유동층 매질입자는 구형을 사용하는 것이 일정유속에서 공극률을 낮게 유지할 수 있어 좋았고 실제로 미생물막 유동층 반응기에서는 미생물막이 매질에 부착되면 비중이 감소하므로 매질의 비중이 높을수록 유동층을 유지하기가 쉽다.

  • PDF

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제4권1호
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF