• Title/Summary/Keyword: fluid-filled

Search Result 333, Processing Time 0.02 seconds

Axisymmetric Vibrations of a Fluid-filled Thick Infinite Cylindrical Shell with Embedded Internal Strength Members (길이 방향 내심 장력재가 있는 유체 충진된 두꺼운 원통셸의 축대칭 진동 해석)

  • 함일배;신구균;정의봉
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.411-418
    • /
    • 1997
  • A method to analyze the axisymmetric vibration and the internal pressure of the fluid filled, strength member embedded infinite cylindrical shell under the condition of axial static tension load applied is presented. As an example, the hose wall vibration and the internal pressure variation characteristics of a fluid filled infinite polyurethane hose are analyzed and dicussed, under the effects of the variation of the embedded strength members and the response positions.

  • PDF

Free Vibrations of Fluid-filled Cylindrical Shells on Partial Elastic Foundations (부분 탄성지지된 유체 저장 원통셸의 자유진동)

  • Jung, Kang;Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.763-770
    • /
    • 2012
  • The free vibration characteristics of fluid-filled cylindrical shells on partial elastic foundations are investigated by an analytical method. The cylindrical shell is fully or partially surrounded by the elastic foundations, these are represented by the Winkler or Pasternak model. The motion of shell is represented by the first order shear deformation theory to account for rotary inertia and transverse shear strains. The steady flow of fluid is described by the classical potential flow theory. The fluid-structure interaction is considered in the analysis. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. To validate the present method, the numerical example is presented and compared with the available existing results.

DYNAMIC CHARACTERISTICS OF CYLINDRICAL SHELLS CONSIDERING FLUID-STRUCTURE INTERACTION

  • Jhung, Myung-Jo;Kim, Wal-Tae;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1333-1346
    • /
    • 2009
  • To assure the reliability of cylinders or shells with fluid-filled annulus, it is necessary to investigate the modal characteristics considering fluid-structure interaction effect. In this study, theoretical background and several finite element models are developed for cylindrical shells with fluid-filled annulus considering fluid-structure interaction. The effect of the inclusion of the fluid-filled annulus on the natural frequencies is investigated, which frequencies are used for typical dynamic analyses such as responses spectrum, power spectral density and unit load excitation. Their response characteristics are addressed with respect to the various representations of the fluid-structure interaction effect.

Modal Analysis of Conical Shell Filled with Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1848-1862
    • /
    • 2006
  • As a basic study on the fluid-structure interaction of the shell structure, a theoretical formulation has been suggested on the free vibration of a thin-walled conical frustum shell filled with an ideal fluid, where the shell is assumed to be fixed at both ends. The motion of fluid coupled with the shell is determined by means of the velocity potential flow theory. In order to calculate the normalized natural frequencies that represent the fluid effect on a fluid-coupled system, finite element analyses for a fluid-filled conical frustum shell are carried out. Also, the effect of apex angle on the frequencies is investigated.

Modal analysis of eccentric shells with fluid-filled annulus

  • Jhung, Myung Jo;Jeong, Kyeong Hoon;Hwang, Won Gul
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.1-20
    • /
    • 2002
  • Investigated in this study are the modal characteristics of the eccentric cylindrical shells with fluid-filled annulus. Theoretical method is developed to find the natural frequencies of the shell using the finite Fourier expansion, and their results are compared with those of finite element method to verify the validation of the method developed. The effect of eccentricity on the modal characteristics of the shells is investigated using a finite element modeling.

Natural Frequency Characteristics of a Cylindrical Tank Filled with Bounded Compressible Fluid (압축성 유체로 충진된 원통형 탱크의 고유진동수의 특성)

  • 정경훈;김강수;박근배
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.291-302
    • /
    • 1997
  • This paper presents an analytical method for evaluating the free vibration of a circular cylindrical tank filled with bounded compressible fluid. The analytical method was developed by means of the finite Fourier series expansion method. The compressible fluid motion was determined by means of the linear velocity potential theory. To clarify the validity of the analytical method, the natural frequencies of a circular cylindrical tank with the clamped-clamped boundary condition, and filled with water, were obtained by the analytical method and the finite element method using a comercial ANSYS 5.2 software. Excellent agreement on the natural frequencies of the liquid-filled tank structure was found. The compressiblity and the fluid density effects on the normalized coupled natural frequencies were investigated. The density of fluid affects on all coupled natural frequencies of the tank, whereas the compressibility of fluid affects mainly on the natural frequencies of lower circumferential modes.

  • PDF

Modal Analysis of Coaxial Shells with Fluid-Filled Annulus

  • Jhung, Myung-Jo;Kim, Yong-Beum;Jeong, Kyeong-Hoon;Park, Suhn
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.328-341
    • /
    • 2000
  • Investigated in this study are the modal characteristics of the coaxial cylindrical shells with fluid-filled annulus. Theoretical method is developed to find the natural frequencies of the shell using the finite Fourier series expansion, and their results are compared with those of finite element method to verify the validation of the method developed. The effect of the fluid-filled annulus and the boundary conditions on the modal characteristics of the coaxial shells is investigated using a finite element modeling.

  • PDF

Experimental Identification of the Longitudinal Wave Propagation Speed in Fluid-filled Elastic Hose (유체 충진 탄성호스 내의 길이 방향 파동 전파속도에 관한 실험적 규명)

  • Kwon, O-Cho;Joh, Chee-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.804-810
    • /
    • 2000
  • In this paper, an experimental identification method is presented to identify the bulge wave and extensional wave propagation speeds in the fluid-filled elastic hose. An fluid-filled hose is hanged vertically for straight position. The exciting device of piston type is developed to generate the bulge wave and extensional wave in the elastic hose. Hydrophones are arranged in the fluid-filled hose linearly to measure the wave pressure. The wave speeds are estimated using the wavenumber-frequency spectrum analysis technique.

  • PDF

Evaluation of Analytical Vibration Characteristics for Triple Cylindrical Shells Filled with Fluid (유체로 채워진 삼중 원통셸의 해석적 진동 특성 평가)

  • 지용관;이영신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.150-160
    • /
    • 2002
  • The free vibration characteristics of the triple cylindrical shells filled with fluid are investigated. The triple cylindrical shells are filled with compressible fluid. The boundary condition is clamped at both ends. Analytical method is developed to evaluate natural frequencies of triple cylindrical shells using Sanders' shell theory and courier series expansion by Stokes' transformation. Their results are compared with those of finite element method to verify the validation of the method developed. The modal characteristics of shells filled with fluid at region 1, 2 and 3 are evaluated.

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.