• Title/Summary/Keyword: fluid surface

Search Result 2,424, Processing Time 0.032 seconds

The Development of Polishing System a Magnetorheological Fluids (자기유변유체를 이용한 연마가공 시스템의 개발)

  • 신영재;김동우;이응숙;김경웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.46-52
    • /
    • 2004
  • The Magnetorheological fluid has the properties that its viscosity has drastic changed under some magnetic fields therefore, Magnetorheological fluids has been used fur micro polishing of the micro part(for example, a spherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorheological finishing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fluid are brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate for glass polishing lends support the validity of the approach.

Impact in bioconvection MHD Casson nanofluid flow across Darcy-Forchheimer Medium due to nonlinear stretching surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Ayed, Hamdi;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.791-798
    • /
    • 2021
  • Current investigation aims to analyze the characteristics of magnetohydrodynamic boundary layer flow of bioconvection Casson fluid in the presence of nano-size particles over a permeable and non-linear stretchable surface. Fluid passes through the Darcy-Forchheimer permeable medium. Effect of different parameter such as Darcy-Forchheimer, porosity parameter, magnetic parameter and Brownian factor are investigated. Increasing Brownian factor leads to the rapid random movement of nanosize particles in fluid flows which shows an expansion in thermal boundary layer and enhances the nanofluid temperature more rapidly. For large values of Darcy-Forchheimer, magnetic parameter and porosity factor the velocity profile decreases. Higher values of velocity slip parameter cause decreasing trend in momentum layer with velocity profile.

UNDERLIGNING THERMOCAPILLARY EFFECTS BY ELECTRON BEAM MELTING OF THIN SPECIMENS

  • Domergue, L.;Camel, D.;Marya, S.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.199-204
    • /
    • 2002
  • Extensive investigations on cast to cast variations observed in steels have underlined the role of thermocapillary or surface tension driven fluid flow in welding operations. The behavior of weld pool under the electric arc is however affected by possible arc modifications linked to microchemistry variations in materials & this limits to some extent the real contribution from surface tension effects. Thus, electron beam welding with high vacuum was used to investigate thermo-capillary effects on thin austenitic stainless steels & nickel based alloys. The weld pool was monitored by video observations to estimate the importance of fluid flow during the melting & solidification phase. The results underline the importance of fluid flow on [mal solidification.

  • PDF

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD (Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구)

  • Farhat, Hassan;Kim, Y.H.;Lee, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

SINGLE-PHASE MULTI-COMPONENT SIMULATION OF STATIC SHAPE AND DYNAMIC DEFORMATION OF RED BLOOD CELLS USING LATTICE BOLTZMANN METHOD (Lattice Boltzmann Method을 이용한 적혈구의 정적인 모양과 동적변형에 대한 연구)

  • Farhat, Hassan;Kim, Y.H.;Lee, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.186-196
    • /
    • 2008
  • The dependence of the rheological properties of blood on shape, aggregation, and deformability of red blood cells (RBCs) has been investigated using hybrid systems by coupling fluid with solid models. We present a simple approach for simulating blood as a multi-component fluid, in which RBCs are modeled as droplets of acquired biconcave shape. We used lattice Boltzmann method (LBM) due to its excellent numerical stability as a simulation tool. The model enables us to control the droplet static shape by imposing non-isotropic surface tension force on the interface between the two components. The use of the proposed non-isotropic surface tension method is justified by the Norris hypothesis. This hypothesis states that the shape of the RBC is due to a non-uniform interfacial surface tension force acting on the RBC periphery. This force is caused by the unbalanced distribution of the lipid molecules on the surface of the RBC. We also used the same concept to investigate the dynamic shape change of the RBC while flowing through the microvasculature, and to explore the physics of the Fahraeus, and the Fahraeus-Lindqvist effects.

  • PDF

A preliminary study on the surface finishing of a hard disk slider using magnetorheological (MR) fluid (자기유변유체를 이용한 하드디스크 슬라이더의 표면연마를 위한 기초연구)

  • Jung, B.S.;Jang, K..I.;Min, B..K.;Lee, S.J.;Seok, J.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.66-72
    • /
    • 2007
  • Surface finishing using magnetorheological (MR) fluid is useful to finish small but not too small workpieces such as those in a few millimeter scale. However, due to the high surface hardness, this finishing process does not seem to be suit for applying to a hard disk slider. In this work, a preliminary study is performed on the finishing of the hard disk slider surface with a mixture of an MR fluid and diamond powder. During a wheel type MR finishing process, centrifugal force is found to be a major factor to cause a reduction in material remove rate (MRR), which is supported by a theoretical model. To facilitate this founding, the rotational speed of tool is confined to 500rpm while a rectilinear alternating motion with the mean speed, which is equivalent to the rotational speed, is additionally applied to the workpieces. As a consequence, MRR of about 2 times of the sole rotational case is obtained. This paper shows that MR finishing process can be used to polish a hard material in millimeter scale efficiently by controlling the speeds of the tool and the workpiece.

  • PDF

A Study on the Ultra Precision Polishing Method of Aluminum Surface Using MR Fluids (MR fluid를 이용한 알루미늄 표면의 초정밀 연마 방법)

  • Lim, Dong-Wook;Kim, Byung-Chan;Hong, Kwang-Pyo;Cho, Myung-Woo
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.20-24
    • /
    • 2017
  • Recent industrial developments are constantly advancing, and rapid technological development is demanding high technology level in related fields. The need for polishing is increasing even more to improve quality. In order to improve the surface quality, the final finishing process or polishing process is a very important part. Research on super precise polishing method using MR fluid is actively being carried out in domestic and foreign countries. Fine magnetic abrasive grains are aligned in the direction of a magnetic force line formed by a magnetic field and serve as a brush to polish a metal surface. This method has the advantage that the shape of the tool is not fixed and is not affected by the shape of the workpiece or the machining area. We will design the electromagnets for the MR polish polishing system and apply the magnetic field analysis using the magnetic field analysis program (ANSYS). The data obtained through this process suggests an efficient method to increase the magnetic flux density important for polishing. We will investigate the influence of the Al6061-T6 specimen on the surface of the MR polishing machine based on the optimized design.

Experimental and Numerical Study on the Characteristics of Free Surface Waves by the Movement of a Circular Cylinder-Shaped Submerged Body in a Single Fluid Layer

  • Jun-Beom Kim;Eun-Hong Min;Weoncheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.89-98
    • /
    • 2023
  • Analyzing the interactions of free surface waves caused by a submerged-body movement is important as a fundamental study of submerged-body motion. In this study, a two-dimensional mini-towing tank was used to tow an underwater body for analyzing the generation and propagation characteristics of free surface waves. The magnitude of the maximum wave height generated by the underwater body motion increased with the body velocity at shallow submerged depths but did not increase further when the generated wave steepness corresponded to a breaking wave condition. Long-period waves were generated in the forward direction as the body moved initially, and then short-period waves were measured when the body moved at a constant velocity. In numerical simulations based on potential flow, the fluid pressure changes caused by the submerged-body motion were implemented, and the maximum wave height was accurately predicted; however, the complex physical phenomena caused by fluid viscosity and wave breaking in the downstream direction were difficult to implement. This research provides a fundamental understanding of the changes in the free surface caused by a moving underwater body.

Numerical Simulation of Acoustic Radiation and Fluid/Structure Interaction Based on the Helmholtz Integral Equation (헬름홀쯔 적분 방정식에 기반을 둔 구조물의 음향방사 및 구조/음향 연성 수치해석)

  • Choi, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.8
    • /
    • pp.411-417
    • /
    • 2008
  • An alternative formulation of the Helmholtz integral equation derived to express the pressure field explicitly in terms of the velocity vector of a radiating surface is used to solve acoustic radiation and fluid/structure interaction problems. This formulation, derived for arbitrary sources, is similar in form to the Rayleigh's formula for planar sources. Because the surface pressure field is expressed explicitly as a surface integral of the surface velocity, which can be implemented numerically using standard Gaussian quadratures, there is no need to use BEM to solve a set of simultaneous equations for the surface pressure at the discretized nodes. Furthermore the non-uniqueness problem inherent in methods based on Helmholtz integral equation is avoided. Validation of this formulation is demonstrated for some simple geometries.